Skip to main content

Refinement-Based OWL Class Induction with Convex Measures

  • Conference paper
  • First Online:
Semantic Technology (JIST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10675))

Included in the following conference series:

Abstract

Beam-search may be used to iteratively explore and evaluate refinements of candidate hypotheses expressed in logical formalisms such as description logic. In this paper, we analyse heuristics for beam search methods over OWL classes and present a novel search algorithm, OWL-Miner which leverages the properties of convex measure functions to deliver an improved memory-bounded beam search. We present performance results on the mutagenesis benchmark problem and demonstrate superior performance relative to another state-of-the-art implementation, and present 10-fold cross-validated accuracy results which are comparable with those from a variety of other methods. Our improvements to the space and time-based efficiency of refinement-based learning algorithms are significant for expanding the size of learning problems that can be feasibly addressed by refinement learning and the quality of solutions that can be found with limited resources.

The original version of this chapter was revised: The authors corrected errors (mainly in Section 5) regarding the results reported for OWL-Miner and DL-Learner. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-70682-5_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/AKSW/DL-Learner/tree/develop/examples/mutagenesis.

References

  1. d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the Semantic Web: what does it buy? Semant. Web 1(1, 2), 53–59 (2010)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  3. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning KR 2006, pp. 1–36 (2006)

    Google Scholar 

  4. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Mach. Learn. 78(1–2), 203–250 (2009)

    MathSciNet  Google Scholar 

  5. Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1976). Includes index. Bibliography: pp. 335–336

    MATH  Google Scholar 

  6. Morishita, S., Sese, J.: Transversing itemset lattices with statistical metric pruning. In: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2000, pp. 226–236. ACM, New York (2000)

    Google Scholar 

  7. Fürnkranz, J., Flach, P.A.: ROC ‘n’ rule learning-towards a better understanding of covering algorithms. Mach. Learn. 58(1), 39–77 (2005)

    Article  MATH  Google Scholar 

  8. Zimmermann, A., Raedt, L.D.: Cluster-grouping: from subgroup discovery to clustering. Mach. Learn. 77(1), 125–159 (2009)

    Article  MATH  Google Scholar 

  9. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Number SIE-07-001. Flinders University, Adelaide, Australia

    Google Scholar 

  10. Ratcliffe, D., Taylor, K.: Closed-world concept induction for learning in OWL knowledge bases. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 429–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13704-9_33

    Google Scholar 

  11. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991)

    Article  Google Scholar 

  12. Lodhi, H., Muggleton, S.: Is mutagenesis still challenging? In: Proceedings of the 15th International Conference on Inductive Logic Programming, ILP 2005, Late-Breaking Papers, pp. 35–40 (2005)

    Google Scholar 

  13. Ng, K.S.: Learning comprehensible theories from structured data. Ph.D. thesis, Research School of Information Sciences and Engineering and The Australian National University, October 2005

    Google Scholar 

  14. Taylor, K.: Generalization by absorption of definite clauses. J. Logic Program. 40(2–3), 127–157 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44960-4_3. ACM ID: 742934

    Chapter  Google Scholar 

  16. Lehmann, J., Haase, C.: Ideal downward refinement in the \(\cal{EL}\) description logic. In: De Raedt, L. (ed.) ILP 2009. LNCS (LNAI), vol. 5989, pp. 73–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13840-9_8

    Chapter  Google Scholar 

  17. Lehmann, J.: DL-Learner: learning concepts in description logics. J. Mach. Learn. Res. (JMLR) 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85928-4_12

    Chapter  Google Scholar 

  19. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266 (1990)

    Google Scholar 

  20. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Appl. Intell. 26(2), 139–159 (2007)

    Article  Google Scholar 

  21. Ławrynowicz, A., Potoniec, J.: Fr-ONT: an algorithm for frequent concept mining with formal ontologies. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 428–437. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_46

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ratcliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ratcliffe, D., Taylor, K. (2017). Refinement-Based OWL Class Induction with Convex Measures. In: Wang, Z., Turhan, AY., Wang, K., Zhang, X. (eds) Semantic Technology. JIST 2017. Lecture Notes in Computer Science(), vol 10675. Springer, Cham. https://doi.org/10.1007/978-3-319-70682-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70682-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70681-8

  • Online ISBN: 978-3-319-70682-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics