Skip to main content

Mining Inverse and Symmetric Axioms in Linked Data

  • Conference paper
  • First Online:
Semantic Technology (JIST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10675))

Included in the following conference series:

Abstract

In the context of Linked Open Data, substantial progress has been made in mining of property subsumption and equivalence axioms. However, little progress has been made in determining if a predicate is symmetric or if its inverse exists within the data. Our study of popular linked datasets such as DBpedia, YAGO and their associated ontologies has shown that they contain very few inverse and symmetric property axioms. The state-of-the-art approach ignores the open-world nature of linked data and involves a time-consuming step of preparing the input for the rule-miner. To overcome these shortcomings, we propose a schema-agnostic unsupervised method to discover inverse and symmetric axioms from linked datasets. For mining inverse property axioms, we find that other than support and confidence scores, a new factor called predicate-preference factor (ppf) is useful and setting an appropriate threshold on ppf helps in mining quality axioms. We also introduce a novel mechanism, which also takes into account the semantic-similarity of predicates to rank-order candidate axioms. Using experimental evaluation, we show that our method discovers potential axioms with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Version 2015-10.

  2. 2.

    It could very well be the minimum R-Score in \(R_A\).

  3. 3.

    https://datahub.io/dataset/geospecies.

  4. 4.

    Semantic Web Dog Food: http://data.semanticweb.org/.

  5. 5.

    https://www.wikidata.org/wiki/.

  6. 6.

    http://www.cse.iitm.ac.in/~rajeeviv/praxis/praxis.html.

References

  1. Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. Am. Statist. 52(2), 119–126 (1998)

    MathSciNet  Google Scholar 

  2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)

    Article  Google Scholar 

  3. Borgelt, C., Kruse, R.: Induction of association rules: apriori implementation. In: Härdle, W., Rönze, B. (eds.) Compstat, pp. 395–400. Physica, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: ECAI, vol. 16, p. 435 (2004)

    Google Scholar 

  5. De Nies, T., et al.: Normalized semantic web distance. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_5

    Chapter  Google Scholar 

  6. Etzioni, O., Fader, A., Christensen, J., Soderland, S.: Mausam: open information extraction: the second generation. In: IJCAI, vol. 11, pp. 3–10 (2011)

    Google Scholar 

  7. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33615-7_18

    Chapter  Google Scholar 

  8. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 707–730 (2015). Springer

    Article  Google Scholar 

  9. Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge bases. In: Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, pp. 43–48. ACM (2013)

    Google Scholar 

  10. Jenks, G.: The data model concept in statistical mapping. Int. Yearb. Cartogr. 7, 186–190 (1967)

    Google Scholar 

  11. Koutraki, M., Preda, N., Vodislav, D.: Online relation alignment for linked datasets. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 152–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_10

    Chapter  Google Scholar 

  12. Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn. Res. 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Petrucci, G., Ghidini, C., Rospocher, M.: Ontology learning in the deep. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 480–495. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_31

    Chapter  Google Scholar 

  14. Ramakrishnan, C., Kochut, K.J., Sheth, A.P.: A framework for schema-driven relationship discovery from unstructured text. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 583–596. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_42

    Chapter  Google Scholar 

  15. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

    Article  Google Scholar 

  16. Del Vasto Terrientes, L., Moreno, A., Sánchez, D.: Discovery of relation axioms from the web. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS (LNAI), vol. 6291, pp. 222–233. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15280-1_22

    Chapter  Google Scholar 

  17. Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P.: Fixing the domain and range of properties in linked data by context disambiguation. In: LDOW@ WWW (2015)

    Google Scholar 

  18. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_9

    Chapter  Google Scholar 

  19. Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: An unsupervised data-driven method to discover equivalent relations in large linked datasets. Semant. Web 8(2), 1–27 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Irny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Irny, R., Sreenivasa Kumar, P. (2017). Mining Inverse and Symmetric Axioms in Linked Data. In: Wang, Z., Turhan, AY., Wang, K., Zhang, X. (eds) Semantic Technology. JIST 2017. Lecture Notes in Computer Science(), vol 10675. Springer, Cham. https://doi.org/10.1007/978-3-319-70682-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70682-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70681-8

  • Online ISBN: 978-3-319-70682-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics