Skip to main content

Closed-Form Approximate Solutions for the Local Buckling Behavior of Composite Laminated Beams Based on Third-Order Shear Deformation Theory

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

This paper presents approximate closed-form analytical methods for the assessment of the local buckling behaviour (i.e. buckling of flanges and webs) of shear-deformable composite laminated beams. The analysis approach relies on the discrete plate method, i.e. the buckling analysis of flanges and webs modelled as separate plates that are elastically clamped at those edges where the adjacent section members are located. We perform these local buckling analyses within the framework of third-order shear deformation theory (short: TSDT) by Reddy (Mechanics of Laminated Composite Plates and Shells, 2004, [1]) and compare the results to analysis approaches that we established using classical laminated plate theory (CLPT) and first-order shear deformation theory (FSDT). The buckling analysis uses simple shape functions for the displacements and rotation angles and enables closed-form solutions based on the principle of minimum elastic potential of the buckled plates. The results show that the approximate analysis approach work with very satisfying accuracy despite its rather simple and straightforward nature and thus is especially suited for all practical applications where computational time and effort are crucial factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, 2nd edn. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  2. Barbero, E., Tomblin, J.: Euler buckling of thin-walled composite columns. Thin-Walled Struct. 17, 237–258 (1993)

    Article  Google Scholar 

  3. Barbero, E., Raftoyiannis, I.G.: Euler buckling of pultruded composite columns. Compos. Struct. 24, 139–147 (1993)

    Article  MATH  Google Scholar 

  4. Barbero, E., Tomblin, J.: A phenomenological design equation for FRP columns with interaction between local and global buckling. Thin-Walled Struct. 18, 117–131 (1994)

    Article  Google Scholar 

  5. Barbero, E., Raftoyiannis, I.G.: Lateral and distortional buckling of pultruded I-beams. Compos. Struct. 27, 261–268 (1994)

    Article  Google Scholar 

  6. Davalos, J., Qiao, P.: Analytical and experimental study of lateral and distortional buckling of FRP wide-flange beams. J. Compos. Constr. 1, 150–159 (1997)

    Article  Google Scholar 

  7. Davalos, J., Qiao, P., Salim, H.A.: Flexural-torsional buckling of pultruded fiber reinforced plastic composite I-beams: experimental and analytical evaluations. Compos. Struct. 38, 241–250 (1997)

    Article  Google Scholar 

  8. Gan, L.H., Ye, L., Mai, Y.W.: Simulations of mechanical performance of pultruded I-beams with various ange-web conjunctions. Compos. B 30, 423–429 (1999)

    Article  Google Scholar 

  9. Lee, J., Kim, S.E.: Flexural torsional buckling of thin-walled I-section composites. Comput. Struct. 79, 987–995 (2001)

    Article  Google Scholar 

  10. Kollár, L.P.: Flexural-torsional buckling of open section composite columns with shear deformation. Int. J. Solids Struct. 38, 7525–7541 (2001)

    Article  MATH  Google Scholar 

  11. Qiao, P., Zou, G., Davalos, J.F.: Flexural-torsional buckling of fiber-reinforced plastic composite cantilever I-beams. Compos. Struct. 60, 205–217 (2003)

    Article  Google Scholar 

  12. Shan, L., Qiao, P.: Flexural-torsional buckling of fiber-reinforced plastic composite open channel beams. Compos. Struct. 68, 211–224 (2005)

    Article  Google Scholar 

  13. De Lorenzis, L., La Tegola, A.: Effect of the actual distribution of applied stresses on global buckling of isotropic and transversely isotropic thin-walled members: theoretical analysis. Compos. Struct. 68, 339–348 (2005)

    Article  Google Scholar 

  14. Teter, A., Kolakowski, Z.: Buckling of thin-walled composite structures with intermediate stiffeners. Compos. Struct. 69, 421–428 (2005)

    Article  MATH  Google Scholar 

  15. Kolakowski, Z., Kubiak, T.: Load-carrying capacity of thin-walled composite structures. Compos. Struct. 67, 417–426 (2005)

    Article  Google Scholar 

  16. Vo, T.P., Lee, J.: Flexural-torsional buckling of thin-walled composite box beams. Thin-Walled Struct. 45, 790–798 (2007)

    Article  Google Scholar 

  17. Vo, T.P., Lee, J.: Flexural-torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory. Int. J. Mech. Sci. 51, 631–641 (2009)

    Article  Google Scholar 

  18. Naderian, H.R., Ronagh, H.R., Azharic, M.: Torsional and flexural buckling of composite FRP columns with cruciform sections considering local instabilities. Compos. Struct. 93, 2575–2586 (2011)

    Article  Google Scholar 

  19. Sapountzakis, E.J., Dourakopoulos, J.A.: Flexural-torsional buckling analysis of composite beams by BEM including shear deformation effect. Mech. Res. Commun. 35, 497–516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qiao, P., Shan, L.: Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes. Compos. Struct. 70, 468–483 (2005)

    Article  Google Scholar 

  21. Bank, L.C., Yin, J.: Buckling of orthotropic plates with free and rotationally restrained edges. Thin-Walled Struct. 24, 83–96 (1996)

    Article  Google Scholar 

  22. Kollár, L.: Buckling of unidirectionally loaded composite plates with one free and one rotationally restrained unloaded edge. J. Struct. Eng. 128, 1202–1211 (2002)

    Article  Google Scholar 

  23. Kollár, L.: Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections. J. Struct. Eng. 129, 1503–1513 (2003)

    Article  Google Scholar 

  24. Qiao, P., Davalos, J.F., Wang, J.: Local buckling of composite FRP shapes by discrete plate analysis. J. Struct. Eng. 127, 245–255 (2001)

    Article  Google Scholar 

  25. Qiao, P., Zou, G.: Local buckling of elastically restrained fiber-reinforced plastic plates and its application to box sections. J. Eng. Mech. 128, 1324–1330 (2002)

    Article  Google Scholar 

  26. Zureick, A., Shih, B.: Local buckling of fiber-reinforced polymeric structural members under linearly-varying edge loading - part 1. Compos. Struct. 41, 79–86 (1998)

    Article  Google Scholar 

  27. Mittelstedt, C.: Stability behaviour of arbitrarily laminated composite plates with free and elastically restrained unloaded edges. Int. J. Mech. Sci. 49, 819–833 (2007)

    Article  Google Scholar 

  28. Mittelstedt, C.: Local buckling of wide-flange thin-walled anisotropic composite beams. Arch. Appl. Mech. 77, 439–452 (2007)

    Article  MATH  Google Scholar 

  29. Mittelstedt, C., Beerhorst, M.: Closed-form buckling analysis of compressively loaded composite plates braced by omega-stringers. Compos. Struct. 88, 424–435 (2009)

    Article  Google Scholar 

  30. Beerhorst, M., Seibel, M., Mittelstedt, C.: Buckling behavior of an orthotropic plate strip under combined compression and shear. J. Aircr. 48, 1360–1367 (2011)

    Article  Google Scholar 

  31. Kühn, T., Pasternak, H., Mittelstedt, C.: Local buckling of shear-deformable laminated composite beams with arbitrary cross-sections using discrete plate analysis. Compos. Struct. 113, 236–248 (2014)

    Article  Google Scholar 

  32. Mittelstedt, S., Schürg, M., Mittelstedt, C.: Globale Stabilität schubweicher anisotroper hochbelasteter Laminat- und Sandwich-Träger unter kombinierter Belastung im Brücken- und allgemeinen Ingenieurhochbau (in German). Research report, Sogeti Deutschland GmbH, Hamburg, Germany (2017)

    Google Scholar 

  33. Timoshenko, S., Gere, J.: Theory of Elastic Stability. McGraw-Hill Inc, New York (1961)

    Google Scholar 

Download references

Acknowledgements

Parts of the research contained in this paper have been financially supported by the Bundesinstitut für Bau-, Stadt- und Raumforschung under grant no. SWD-10.08.18.7-15.62 which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mittelstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrmann, J., Kühn, T., Müllenstedt, T., Mittelstedt, S., Mittelstedt, C. (2018). Closed-Form Approximate Solutions for the Local Buckling Behavior of Composite Laminated Beams Based on Third-Order Shear Deformation Theory. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics