Skip to main content

A J-Interaction Integral to Compute Force Stress and Couple Stress Intensity Factors for Cracks in Functionally Graded Micropolar Materials

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

In contrast to classical elasticity, the micropolar continuum theory allows to describe materials with significant microstructural effects, such as particulate, granular and porous composites. Such materials show a size effect and have often a spatially varying distribution of mechanical properties. This contribution focuses on the establishment of the interaction integral (I-integral) for decoupling the force stress intensity factors (FSIFs) and couple stress intensity factors (CSIFs) of a crack in functionally graded micropolar material (FGMM). The I-integral is derived from the J-integral by superimposing an auxiliary field on the actual field. The auxiliary field is examined using three different definitions including the constant-constitutive-tensor (CCT) formulation, the non-equilibrium (NE) formulation and the incompatibility (IC) formulation. The NE and IC formulations are more appropriate than the CCT formulation because the I-integral using the CCT formulation involves strain gradients and curvature gradients, which may cause loss of accuracy in numerical calculations. Furthermore, we introduce the patched extended finite element method (patched-XFEM), which replaces crack-tip enrichment functions from the XFEM by a local refined mesh to improve the numerical precision. The I-integral in combination with the patched-XFEM is employed to examine numerically the influence of material parameters on the FSIFs and CSIFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  2. Karlis, G.F., Tsinopoulos, S.V., Polyzos, D., Beskos, D.E.: Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity. Comput. Methods Appl. Mech. Eng. 196, 5092–5103 (2007)

    Article  MATH  Google Scholar 

  3. Trovalusci, P., Ostoja-Starzewski, M., DeBellis, M.L.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A Solids 49, 396–407 (2015)

    Article  Google Scholar 

  4. Cosserat, E., Cosserat, F.: Theories des Corps Deformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  5. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Eringen, A.C.: In: Liebowitz, H. (ed.) Theory of Micropolar Elasticity (in Fracture). Academic Press, New York (1968)

    Google Scholar 

  7. Cowin, S.C.: Stress functions for Cosserat elasticity. Int. J. Solids Struct. 6, 389–398 (1970)

    Article  MATH  Google Scholar 

  8. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975)

    Article  MATH  Google Scholar 

  9. Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15, 91–98 (1982)

    Article  Google Scholar 

  10. Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18, 2572–2580 (1983)

    Article  Google Scholar 

  11. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  12. Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Wiley, New York (1995)

    Google Scholar 

  13. Lakes, R.S.: On the torsional properties of single osteons. J. Biomech. 28, 1409–1410 (1995)

    Article  Google Scholar 

  14. Sternberg, E., Muki, R.: The effect of couple-stresses on the stress concentration around a crack. Int. J. Solids Struct. 36(1), 69–95 (1967)

    Article  Google Scholar 

  15. Atkinson, C., Leppington, F.G.: Some calculations of the energy-release rate G for cracks in micropolar and couple-stress elastic media. Int. J. Fract. 10, 599–602 (1974)

    Article  Google Scholar 

  16. Paul, H.S., Sridharan, K.: The penny-shaped crack problem in micropolar elasticity. Int. J. Eng. Sci. 18, 651–664 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paul, H.S., Sridharan, K.: The problem of a Griffith crack in micropolar elasticity. Int. J. Eng. Sci. 19, 563–579 (1981)

    Article  MATH  Google Scholar 

  18. Sridharan, K.: The micropolar thermoelastic problem of uniform heat-flow interrupted by an insulated penny-shaped crack. Int. J. Eng. Sci. 21, 1459–1469 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diegele, E., Elsaber, R., Tsakmakis, C.: Linear micropolar elastic crack-tip fields under mixed mode loading conditions. Int. J. Fract. 129, 309–339 (2004)

    Article  MATH  Google Scholar 

  20. Yavari, A., Sarkani, S., Moyer, E.T.: On fractal cracks in micropolar elastic solids. J. Appl. Mech. 69, 45–54 (2002)

    Article  MATH  Google Scholar 

  21. Midya, G.K., Layek, G.C., De, T.K.: On diffraction of normally incident SH-waves by a line crack in micropolar elastic medium. Int. J. Solids Struct. 44, 4092–4109 (2007)

    Article  MATH  Google Scholar 

  22. Warren, W.E., Byskov, E.: A general solution to some plane problems of micropolar elasticity. Eur. J. Mech. A Solids 27, 18–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y.D., Lee, K.Y.: Fracture analysis in micropolar elasticity: mode-I crack. Int. J. Fract. 156, 179–184 (2009)

    Article  MATH  Google Scholar 

  24. Antipov, Y.A.: Weight functions of a crack in a two-dimensional micropolar solid. Q. J. Mech. Appl. Math. 65, 239–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Piccolroaz, A., Mishuris, G., Radi, E.: Mode III interfacial crack in the presence of couple-stress elastic materials. Eng. Fract. Mech. 80, 60–71 (2012)

    Article  Google Scholar 

  26. Kennedy, T.C.: Modeling failure in notched plates with micropolar strain softening. Compos. Struct. 44, 71–79 (1999)

    Article  Google Scholar 

  27. Dillard, T., Forest, S., Ienny, P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A Solids 25, 526–549 (2006)

    Article  MATH  Google Scholar 

  28. Shmoylova, E., Potapenko, S., Rothenburg, L.: Boundary element analysis of stress distribution around a crack in plane micropolar elasticity. Int. J. Eng. Sci. 45, 199–209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Atoshchenko, E., Bordas, S.P.A.: Fundamental solutions and dual boundary methods for fracture in plane Cosserat elasticity. Proc. R. Soc. A 471, 20150216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khoei, A.R., Karimi, K.: An enriched-FEM model for simulation of localization phenomenon in Cosserat continuum theory. Comput. Mater. Sci. 44, 733–749 (2008)

    Article  Google Scholar 

  31. Kapiturova, M., Gracie, R., Potapenko, S.: Simulation of cracks in a Cosserat medium using the extended finite element method. Math. Mech. Solids 21(5), 621–635 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jaric, J.: The energy release rate and the J-integral in nonlocal micropolar field theory. Int. J. Eng. Sci. 28, 1303–1313 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, H.J., Sumigawa, T., Kitamura, T.: A domain-independent interaction integral for linear elastic fracture analysis of micropolar materials. Mech. Mater. 74, 1–13 (2014)

    Article  Google Scholar 

  34. Stern, M., Becker, E.B., Dunham, R.S.: A contour integral computation of mixed-mode stress intensity factors. Int. J. Fract. 12, 359–368 (1976)

    Google Scholar 

  35. Kfouri, A.P.: Some evaluations of the elastic T-term using Eshelby’s method. Int. J. Fract. 30, 301–315 (1986)

    Article  Google Scholar 

  36. Dolbow, J.E., Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Struct. 39, 2557–2574 (2002)

    Article  MATH  Google Scholar 

  37. Kim, J.H., Paulino, G.H.: Consistent formulations of the interaction integral method for fracture of functionally graded materials. J. Appl. Mech. T ASME 72, 351–364 (2005)

    Article  MATH  Google Scholar 

  38. Guo, L.C., Noda, N.: Modeling method for a crack problem of functionally graded materials with arbitrary properties-piecewise-exponential Model. Int. J. Solids Struct. 44(21), 6768–6790 (2007)

    Article  MATH  Google Scholar 

  39. Guo, L.C., Wang, Z.H., Noda, N.: A fracture mechanics model for a crack problem of functionally graded materials with stochastic mechanical properties. Proc. R. Soc. A 468, 2939–2961 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu, H.J., Wu, L.Z., Guo, L.C., Du, S.Y., He, Q.L.: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method. Int. J. Solids Struct. 46, 3710–3724 (2009)

    Article  MATH  Google Scholar 

  41. Yu, H.J., Wu, L.Z., Guo, L.C., He, Q.L., Du, S.Y.: Interaction integral method for the interfacial fracture problems of two nonhomogeneous materials. Mech. Mater. 42, 435–450 (2010)

    Article  Google Scholar 

  42. Pathak, H., Singh, A., Singh, I.V.: Numerical simulation of bi-material interfacial cracks using EFGM and XFEM. Int. J. Mech. Mater. Des. 8, 9–36 (2012)

    Article  Google Scholar 

  43. Bhattacharya, S., Singh, I.V., Mishra, B.K., Bui, T.Q.: Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM. Comput. Mech. 52, 799–814 (2013)

    Article  MATH  Google Scholar 

  44. Cahill, L.M.A., Natarajan, S., Bordas, S.P.A., O’Higgins, R.M., McCarthy, C.T.: An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos. Struct. 107, 119–130 (2014)

    Article  Google Scholar 

  45. Yu, H.J., Sumigawa, T., Wu, L.Z., Kitamura, T.: Generalized domain-independent interaction integral for solving the stress intensity factors of nonhomogeneous materials. Int. J. Solids Struct. 67–68, 151–168 (2015)

    Article  Google Scholar 

  46. Lakes, R.S., Benedict, R.L.: Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20, 1161–1167 (1982)

    Article  MATH  Google Scholar 

  47. Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26, 639–681 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Steinmann, P., Willam, K.: Localization within the framework of micropolar elasto-plasticity. Adv. Contin. Mech. 296–313 (1991)

    Google Scholar 

  49. Eischen, J.W.: Fracture of nonhomogeneous materials. Int. J. Fract. 34, 3–22 (1987)

    Google Scholar 

  50. Jin, Z.H., Noda, N.: Crack-tip singular fields in nonhomogeneous materials. J. Appl. Mech. 61, 738–740 (1994)

    Article  MATH  Google Scholar 

  51. Lubarda, V.A., Markenscoff, X.: On conservation integrals in micropolar elasticity. Philos. Mag. 83, 1365–1377 (2003)

    Article  Google Scholar 

  52. Rao, B.N., Kuna, M.: Interaction integrals for fracture analysis of functionally graded piezoelectric materials. Int. J. Solids Struct. 45(20), 5237–5257 (2008)

    Article  MATH  Google Scholar 

  53. Rao, B.N., Kuna, M.: Interaction integrals for fracture analysis of functionally graded magnetoelectroelastic materials. Int. J. Fract. 153(1), 15–37 (2008)

    Article  MATH  Google Scholar 

  54. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  55. Brown, W.F., Srawley, J.E.: Plane strain crack toughness testing of high strength metallic materials. ASTM STP 410, 12 (1966)

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Grant No. 11772105 and 11472191) and by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard Kuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, H., Kuna, M. (2018). A J-Interaction Integral to Compute Force Stress and Couple Stress Intensity Factors for Cracks in Functionally Graded Micropolar Materials. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics