Skip to main content

Remarks on a Fluid-Structure Interaction Scheme Based on the Least-Squares Finite Element Method at Small Strains

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

The present contribution introduces a least-squares finite element method (LSFEM) based fluid-structure interaction (FSI) approach. The proposed method is based on the formulation of mixed finite elements in terms of stresses and velocities for both the fluid and the solid regime. The LSFEM offers the advantage of a flexibility to construct functionals with sophisticated physical quantities as e.g. stresses, velocities and displacements. The approximation of the stresses and velocities in suitable spaces, namely in the spaces \(H(\text {div})\) and \(H^1\), respectively, leads to the inherent fulfillment of the coupling conditions of a FSI method. A numerical example considering an incompressible, linear elastic material behavior at small deformations and the incompressible Navier–Stokes equations demonstrates the applicability of the LSFEM-FSI method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, A., Reimann, T., Sternel, D.C., Schäfer, M.: Comparison of advanced turbulence modeling approaches for fluid-structure interaction. In: Coupled Problems in Science and Engineering VI, CIMNE (2015)

    Google Scholar 

  2. Balzani, D., Deparis, S., Fausten, S., Forti, D., Heinlein, A., Klawonn, A., Quarteroni, A., Rheinbach, Q., Schröder, J.: Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains. Int. J. Numer. Method Biomed. Eng. (2015)

    Google Scholar 

  3. Bazilevs, Y., Hsu, M., Kiendl, J., Wüchner, R., Bletzinger, K.: 3D Simulation of wind turbine rotors at full scale. Part II: Fluid - structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65, 236–253 (2011)

    Google Scholar 

  4. Bochev, P.B., Gunzburger, M.D.: Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations. Comput. Methods Appl. Mech. Eng. 126(3–4), 267–287 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods, 1st edn. Springer, New York (2009)

    MATH  Google Scholar 

  6. Bodnár, T., Galdi, G., Nečasová, S.: Fluid-Structure Interaction and Biomedical Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  7. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  8. Braess, D.: Finite Elemente, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  9. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bungartz, H.-J., Mehl, M., Schäfer, M.: Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  11. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cori, J.-F., Etienne, S., Garon, A., Pelletier, D.: High-order implicit Runge–Kutta time integrators for fluid-structure interactions. Int. J. Numer. Methods Fluids 78, 385–412 (2015)

    Article  MathSciNet  Google Scholar 

  13. Deang, J.M., Gunzburger, M.D.: Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20(3), 878–906 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)

    Book  Google Scholar 

  15. Förster, Ch., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E.: Computation of fluid-structure interaction on lightweight structures. J. Wind Eng. Ind. Aerodyn. 89(14), 1351–1368 (2001)

    Article  Google Scholar 

  17. Hron, J., Turek, S.: A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD (2006)

    Google Scholar 

  18. Hughes, T.J.R., Brooks, A.N.: Multi-dimensional upwind scheme with no crosswind diffusion. ASME, Appl. Mech. Div. 34, 19–35 (1979)

    MATH  Google Scholar 

  19. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, B.-N.: The Least-Squares Finite Element Method, Scientific Computation. Springer, Berlin (1998)

    Book  Google Scholar 

  21. Kayser-Herold, O., Matthies, H.G.: A unified least-squares formulation for fluid-structure interaction problems. Comput. Struct. 85, 998–1011 (2007)

    Article  MathSciNet  Google Scholar 

  22. Korelc, J.: Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187(1), 231–248 (1997)

    Article  MATH  Google Scholar 

  23. Korelc, J.: Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 18(4), 312–327 (2002)

    Article  Google Scholar 

  24. Küttler, U., Gee, M., Förster, Ch., Comerford, A., Wall, W.A.: Coupling strategies for biomedical fluid - structure interaction problems. Int. J. Numer. Methods Biomed. Eng. 26, 305–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)

    Article  MATH  Google Scholar 

  26. Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes–Darcy flow. SIAM J. Numer. Anal. 49(1), 387–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nisters, C., Schwarz, A.: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. (2017, in revision)

    Google Scholar 

  28. Ozcelikkale, A., Sert, C.: Least-squares spectral element solution of incompressible Navier–Stokes equations with adaptive refinement. J. Comput. Phys. 231(9), 3755–3769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pian, T.H.H., Sumihara, K.: A rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 1685–1695 (1984)

    Article  MATH  Google Scholar 

  30. Prabhakar, V., Pontaza, J.P., Reddy, J.N.: A collocation penalty least-squares finite element formulation for incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 449–463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, Berlin (1977)

    Chapter  Google Scholar 

  32. Reddy, J.N.: Penalty-finite-element analysis of 3-D Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 35, 87–97 (1982)

    Article  MATH  Google Scholar 

  33. Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 3rd edn. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  34. Schröder, J., Schwarz, A., Steeger, K.: Least-squares finite element formulations for isotropic and anisotropic elasticity at small and large strains. Advanced Finite Element Technologies. CISM Courses and Lectures, pp. 131–175. Springer, Berlin (2016)

    Chapter  Google Scholar 

  35. Schröder, W.: Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 109. Springer, Berlin (2010)

    Book  Google Scholar 

  36. Schwarz, A., Nickaeen, M., Serdas, S., Nisters, C., Ouazzi, A., Schröder, J., Turek, S.: A comparative study of mixed least-squares FEMs for the incompressible Navier–Stokes equations. Int. J. Comput. Sci. Eng. (2016)

    Google Scholar 

  37. Schwarz, A., Schröder, J., Serdas, S., Turek, S., Ouazzi, A., Nickaeen, M.: Performance aspects of a mixed s-v LSFEM for the incompressible Navier–Stokes equations with improved mass conservation. Proc. Appl. Math. Mech. 13, 97–98 (2013)

    Article  Google Scholar 

  38. Schwarz, A., Steeger, K., Schröder, J.: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity. Comput. Mech. 54(3), 603–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Starke, G.: An adaptive least-squares mixed finite element method for elasto-plasticity. SIAM J. Numer. Anal. 45, 371–388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tian, F.-B., Dai, H., Luo, H., Doyle, J.F., Rousseau, B.: Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M.: Numerical benchmarking of fluid-structure interaction: a comparison of different discretization and solution approaches (2010)

    Google Scholar 

  43. van Zuijlen, A.H., Bijl, H.: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction. Nonlinear Anal. Theory Methods Appl. 63(5–7), e1597–e1605 (2005)

    Article  MATH  Google Scholar 

  44. Wall, W.A., Genkinger, S., Ramm, E.: A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput. Fluids 36(1), 169–183 (2007)

    Article  MATH  Google Scholar 

  45. Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement models. Numer. Comput. Methods Struct. Mech. 43 (1973)

    Google Scholar 

  46. Wolfram Research Inc. Mathematica. Campaign: Wolfram Research, Inc. Version 10.1 edition (2015)

    Google Scholar 

  47. Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P.: Fluid-structure interaction. The Finite Element Method for Fluid Dynamics, vol. 3, pp. 423–449 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG) under grants SCHW 1355/3-1 and SCHR 570/31-1: “Least-Squares Fluid-Struktur-Interaktion für inkompressible Strömungsprozesse”. Furthermore, we would like to thank Karl Steeger for fruitful discussions about RT-finite-element spaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Nisters .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Algorithmic Implementation of Both Finite Element Formulations

Table 1 Algorithm for the SV formulation of the fluid part on element level
Table 2 Algorithm for the SV formulation of the solid part on element level

1.2 Raviart–Thomas Vector-Valued Interpolation Functions

Vectorial basis functions \(\hat{\varvec{v}}^J_1\) of the reference element for the considered stress interpolation in the \(RT_1\)-case are given as

$$\begin{aligned} \hat{\varvec{v}}^1_1&= \left( \begin{array}{c} -8\eta \xi -8\xi ^2+6\xi \\ -8\eta ^2-8\eta \xi +12\eta +6\xi -4 \end{array}\right) \\ \hat{\varvec{v}}^2_1&= \left( \begin{array}{c} 8\xi ^2-4\xi \\ 8\xi \eta -2\eta -6\xi +2 \end{array}\right) \\ \hat{\varvec{v}}^3_1&= \left( \begin{array}{c} 8\xi ^2-4\xi \\ 8\xi \eta -2\eta \end{array}\right) \\ \hat{\varvec{v}}^4_1&= \left( \begin{array}{c} 8\xi \eta -2\xi \\ 8\eta ^2-4\eta \end{array}\right) \\ \hat{\varvec{v}}^5_1&= \left( \begin{array}{c} 8\eta \xi -6\eta -2\xi +2 \\ 8\eta ^2-4\eta \end{array}\right) \\ \hat{\varvec{v}}^6_1&= \left( \begin{array}{c} -8\eta \xi +6\eta -8\xi ^2+12\xi -4 \\ -8\eta ^2-8\eta \xi +6\eta \end{array}\right) \\ \hat{\varvec{v}}^7_1&= \left( \begin{array}{c} -8\eta \xi -16\xi ^2+16\xi \\ -8\eta ^2-16\eta \xi +8\eta \end{array}\right) \\ \hat{\varvec{v}}^8_1&= \left( \begin{array}{c} -16\eta \xi -8\xi ^2+8\xi \\ -16\eta ^2-8\eta \xi +16\eta \end{array}\right) \, . \end{aligned}$$

These functions are transformed to the basis functions of the physical space by

$$ \overline{\varvec{v}}^J_1= \frac{1}{\text {det } \varvec{T}} \varvec{T} \hat{\varvec{v}}^J_1 , $$

with the transformation matrix \(\varvec{T} = \frac{\partial \varvec{x}}{\partial \varvec{\xi }}\), which is constant in here since straight-edged triangle meshes are used. Here \(\varvec{x}\) denotes the coordinate vector of the element in the physical space and \(\varvec{\xi }\) the coordinate vector of the reference element. Then the vector-valued Raviart–Thomas shape functions for \(RT_1\) in two dimensions are obtained as

$$ \psi ^J_1 = \frac{l}{2} \overline{\varvec{v}}^J_1 \qquad \text {and} \qquad \text {div } \psi ^J_1 = \frac{l}{2} \text {div } \overline{\varvec{v}}^J_1 , $$

with l denoting the associated length of the edge of the interpolation sites \(J = 1, \ldots ,6\). The normalization factor l / 2 is omitted for the interpolation sites inside the element, namely for \(J = 7, 8\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisters, C., Schwarz, A., Averweg, S., Schröder, J. (2018). Remarks on a Fluid-Structure Interaction Scheme Based on the Least-Squares Finite Element Method at Small Strains. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics