Skip to main content

On Constitutive Models for the Momentum Transfer to Particles in Fluid-Dominated Two-Phase Flows

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

This contribution deals with fluid flow-particle interactions in fluid dominated two phase flows. Spherical as well as non-spherical particles in the form of are considered. In the case of ellipsoids, the hydrodynamic drag force model based on the Brenner-type resistance tensor is applied. As high shear flow regions are frequently encountered in complex flow patterns, special attention is devoted to the extension of established shear lift models, that are only valid for special cases of shear flows, to a general shear lift model based on permutations of the lift tensor, originally derived by Harper and Chang. A generalized lift vector, valid for ellipsoidal particles, is derived and implemented for the computation of the lift force in general shear flows. The derived generalized shear lift force model is validated against other numerical models for ellipsoids in Couette flow, and its influence on the translational motion of ellipsoidal particles in a three-dimensional lid-driven cavity flow is studied. The computational results confirm the correctness of the proposed generalized shear lift model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner, H.: The Stokes resistance of an arbitrary particle. Chem. Eng. Sci. 18, 1–25 (1963)

    Article  Google Scholar 

  2. Brenner, H.: The Stokes resistance of an arbitrary particle - IV. Arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)

    Article  Google Scholar 

  3. Chiang, T.P., Sheu, W.H.: Numerical prediction of eddy structure in a shear-driven cavity. Comput. Mech. 20(4), 379–396 (1997)

    Article  MATH  Google Scholar 

  4. Crowe, C.T., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC press, Boca Raton (1998)

    Google Scholar 

  5. Derksen, J.J.: Numerical simulation of solids suspension in a stirred tank. AIChE J. 49, 2700–2714 (2003)

    Article  Google Scholar 

  6. Fan, F., Ahmadi, G.: A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J. Aerosol Sci. 26, 813–840 (1995)

    Article  Google Scholar 

  7. Fantoni, M.: Dynamics of ellipsiodal particles dispersed in channel flow turbulence. Ph.D. thesis, University of Udine (2008)

    Google Scholar 

  8. Feng, Y., Kleinstreuer, C.: Analysis of non-spherical particle transport in complex internal shear flows. Phys. Fluids 25(9), 091904 (2013)

    Article  Google Scholar 

  9. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  10. Gallily, I., Cohen, A.-H.: On the orderly nature of the motion of nonspherical aerosol particles II. Inertial collision between a spherical large droplet and axially symmetrical elongated particle. J. Colloid Interface Sci. 68, 338–356 (1979)

    Article  Google Scholar 

  11. Goldstein, H.: Classical Mechanics, 2nd edn. Addison Wesely, Reading (1980)

    MATH  Google Scholar 

  12. Harper, E.Y., Chang, I.D.: Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech. 33(02), 209–225 (1968)

    Article  MATH  Google Scholar 

  13. Hogg, A.J.: The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows. J. Fluid Mech. 212, 285–318 (1994)

    Article  MATH  Google Scholar 

  14. Hriberšek, M., Žajdela, B., Hribernik, A., Zadravec, M.: Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs. Water Res. 45(4), 1729–1735 (2011)

    Article  Google Scholar 

  15. Jafari, A., Tynjälä, T., Mousavi, S.M., Sarkomaa, P.: Simulation of heat transfer in a ferrofluid using computational fluid dynamics technique. Int. J. Heat Fluid Flow 29, 1197–1202 (2008)

    Article  MATH  Google Scholar 

  16. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102, 161–179 (1922)

    Article  MATH  Google Scholar 

  17. Koseff, J.R., Street, R.L.: The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. J. Fluids Eng. 106, 385–389 (1984)

    Article  Google Scholar 

  18. Marchioli, C., Fantoni, M., Soldati, A.: Orientation, distribution and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 49, 33301 (2010)

    Article  MATH  Google Scholar 

  19. Maxey, M.R.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883 (1983)

    Article  MATH  Google Scholar 

  20. Sommerfeld, M.: Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange- Verfahrens. Shaker Verlag, Aachen (1996)

    Google Scholar 

  21. Ravnik, J., Hriberšek, M.: High gradient magnetic particle separation in viscous flows by 3D BEM. Comput. Mech. 51(4), 465–474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ravnik, J., Marchioli, C., Hriberšek, M., Soldati, A.: On shear lift force modelling for non-spherical particles in turbulent flows. In: Psihoyios, G., Simos, T.E., Tsitouras, Ch. (eds.) AIP Conference Proceedings, Rhodes, Greece, vol. 1558, pp. 1107–1110 (2013)

    Google Scholar 

  23. Saffman, P.G.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385 (1965)

    Article  MATH  Google Scholar 

  24. Saffman, P.G.: Corrigendum to: the lift on a small sphere in a slow shear flow. J. Fluid Mech. 31, 624 (1968)

    Article  Google Scholar 

  25. Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid. Mech. 32, 93–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shapiro, M., Goldenberg, M.: Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24, 65–87 (1993)

    Article  Google Scholar 

  27. Sommerfeld, M., Schmalfuss, S.: Numerical analysis of carrier particle motion in a dry powder inhaler. ASME J. Fluids Eng. 138 (2015)

    Google Scholar 

  28. Stone, H.A.: Philip Saffman and viscous flow theory. J. Fluid Mech. 409, 165–183 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsorng, S.J., Capart, H., Lo, D.C., Lai, J.S., Young, D.L.: Behaviour of macroscopic rigid spheres in lid-driven cavity flow. Int. J. Multiph. Flow 34, 76–101 (2008)

    Article  Google Scholar 

  30. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  31. Zadravec, M., Hriberšek, M., Steinmann, P., Ravnik, J.: High gradient magnetic particle separation in a channel with bifurcations. Eng. Anal. Bound. Elem. 49, 22–30 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for the financial support in the framework of the project STE 544/58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, Y., Ravnik, J., Hriberšek, M., Steinmann, P. (2018). On Constitutive Models for the Momentum Transfer to Particles in Fluid-Dominated Two-Phase Flows. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics