Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 520 Accesses

Abstract

Gauge theories have proven to be very successful in describing the fundamental interactions in physics. There are two different disciplines where the gauge theories work extremely well in terms of explaining the observations. On the one hand, the standard model (SM) is a gauge theory of the group SU(3) × SU(2)  × U(1), which describes three of the physics interactions in terms of the geometry of internal spaces over space-time. On the other hand, general relativity is a gauge theory of the Poincare group. Although they are both gauge theories, there is a glaring difference in their dynamical variables. In the former, the connections known as the vector bosons are the dynamical variables, while in the latter it is the metric and not the connections that is dynamical. Consequently, the standard model Lagrangian is only a fourth order polynomial, while that of general relativity is not even a polynomial. One, however, can always expand the metric around a classical background which results in a polynomial of infinite orders and the theory becomes more and more divergent as one goes to higher orders in the perturbative expansion.

This chapter published as: Ahmad Borzou, “A Lorentz Gauge Theory of Gravity,” Class. Quan. Grav., 33 (2016) 025008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity. An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  2. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:hep-th/9711200]

    Article  ADS  MathSciNet  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109]

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150]

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Borzou, Class. Quantum Grav. 33, 025008 (2016) [arXiv:1412.1199]

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Utiyama, Phys. Rev. 101, 1597 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  7. T.W.B. Kibble, J. Math. Phys. 2, 212 (1961)

    Article  ADS  Google Scholar 

  8. D.W. Sciama, Rev. Mod. Phys. 36, 463 (1964)

    Article  ADS  Google Scholar 

  9. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Neeman, Phys. Rep. 258, 1 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Ivanenko, G. Sardanashvily, Phys. Rep. 94, 1 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  12. S.M. Carroll, An Introduction To General Relativity: Spacetime and Geometry (Benjamin Cummings, San Francisco, 2003)

    Google Scholar 

  13. F. De Felice, C.J.S. Clarke, Relativity on Curved Manifolds (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  14. K. Hayashi, T. Shirafuji, Prog. Theor. Phys. 64, 866 (1980)

    Article  ADS  Google Scholar 

  15. V.P. Nair, S. Randjbar-Daemi, V. Rubakov, Phys. Rev. D 80, 104031 (2009) [arXiv:hep-th/0811.3781]

    Article  ADS  MathSciNet  Google Scholar 

  16. C.M. Will, Living Rev. Relativ. 9, 3 (2006) [arXiv:gr-qc/0510072]

    Article  ADS  Google Scholar 

  17. S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borzou, A. (2018). A Lorentz Gauge Theory of Gravity. In: Theoretical and Experimental Approaches to Dark Energy and the Cosmological Constant Problem. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69632-4_3

Download citation

Publish with us

Policies and ethics