Skip to main content

The Parathyroid Hormone Receptor Type 1

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

This chapter describes the molecular and structural properties of the parathyroid hormone receptor type 1 (PTHR1), with emphasis on mechanisms of ligand binding and signal activation, as well as therapeutic applications. The basic protein architecture and mechanistic actions of the PTHR1 can now be viewed in light of the recently reported X-ray crystal and cryo-EM structures obtained for this receptor, which provide insights at an atomic level of resolution. These new structures confirm that the PTHR1 adopts an overall protein topology similar to that seen in peptide hormone-binding G protein-coupled receptors that comprise the class B GPCR subgroup and that it furthermore utilizes a similar basic mechanism of ligand binding and activation. Pharmacologic studies on the PTHR1 have led to the concept that structurally distinct PTH and PTHrP ligands and analogs can bind with altered affinities to different PTHR1 conformations to thus induce different types of signaling responses, including prolonged cAMP responses from endosomes. These distinct modes of action suggest potential new paths to explore for therapeutic ligand development. A number of diseases are linked to mutations in the genes for the PTHR1 or its ligands, PTH and PTHrP, and the evolving approaches for developing new PTHR1 ligands, including small molecules, may lead to new modes of treatment for such diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kronenberg HM. PTHrP and skeletal development. Ann N Y Acad Sci. 2006;1068:1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–72.

    Article  CAS  PubMed  Google Scholar 

  3. Cvicek V, Goddard WA 3rd, Abrol R. Structure-based sequence alignment of the transmembrane domains of all human GPCRs: phylogenetic, structural and functional implications. PLoS Comput Biol. 2016;12:e1004805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lee CW, Gardella TJ, Abousamra AB, Nussbaum SR, Segre GV, Potts JT, Kronenberg HM, Juppner H. Role of the extracellular regions of the parathyroid-hormone (PTH) PTH-related peptide receptor in hormone-binding. Endocrinology. 1994;135:1488–95.

    Article  CAS  PubMed  Google Scholar 

  5. Brewer HB Jr, Ronan R. Bovine parathyroid hormone: amino acid sequence. Proc Natl Acad Sci. 1970;67:1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Niall HD, Keutmann HT, Sauer RT, Hogan ML, Dawson BF, Aurbach GD, Potts JT Jr. The amino-acid sequence of bovine parathyroid hormone I. Hoppe Seylers Z Physiol Chem. 1970;351:1586–8.

    CAS  PubMed  Google Scholar 

  7. Potts JT Jr, Tregear GW, Keutmann HT, Niall HD, Sauer R, Deftos LJ, Dawson BF, Hogan ML, Aurbach GD. Synthesis of a biologically active N-terminal tetratriacontapeptide of parathyroid hormone. Proc Natl Acad Sci U S A. 1971;68:63–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Segre GV, Rosenblatt M, Reiner BL, Mahaffey JE, Potts JT Jr. Characterization of parathyroid hormone receptors in canine renal cortical plasma membranes using a radioiodinated sulfur-free hormone analogue. Correlation of binding with adenylate cyclase activity. J Biol Chem. 1979;254:6980–6.

    CAS  PubMed  Google Scholar 

  9. Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach JH, Rodda CP, Kemp BE, Rodriguez H, Chen EY, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987;237:893–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kemp BE, Mosely JM, Rodda CP, Ebeling PR, Wettenhall REH, Stapleton D, Diefenbach-Jagger H, Ure F, Michelangali VP, Simmons HA, Raisz LG, Martin TJ. Parathyroid hormone-related protein of malignancy: active synthetic fragments. Science. 1987;238:1568–70.

    Article  CAS  PubMed  Google Scholar 

  11. Orloff JJ, Reddy D, de Papp AE, Yang KH, Soifer NE, Stewart AF. Parathyroid hormone-related protein as a prohormone: posttranslational processing and receptor interactions. Endocr Rev. 1994;15:40–60.

    CAS  PubMed  Google Scholar 

  12. Goltzman D, Peytremann A, Callahan E, Tregear GW, Potts JT Jr. Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J Biol Chem. 1975;250:3199–203.

    CAS  PubMed  Google Scholar 

  13. Horiuchi N, Holick MF, Potts JT Jr, Rosenblatt M. A parathyroid hormone inhibitor in vivo: design and biologic evaluation of a hormone analog. Science. 1983;220:1053–5.

    Article  CAS  PubMed  Google Scholar 

  14. Goldman ME, McKee RL, Caulfield MP, Reagan JE, Levy JJ, Gay CT, DeHaven PA, Rosenblatt M, Chorev M. A new highly potent parathyroid hormone antagonist: [D-Trp12,Tyr34]bPTH-(7-34)NH2. Endocrinology. 1988;123:2597–9.

    Article  CAS  PubMed  Google Scholar 

  15. Nutt RF, Caulfield MP, Levy JJ, Gibbons SW, Rosenblatt M, McKee RL. Removal of partial agonism from parathyroid hormone (PTH)-related protein-(7-34)NH2 by substitution of PTH amino acids at positions 10 and 11. Endocrinology. 1990;127:491–3.

    Article  CAS  PubMed  Google Scholar 

  16. Luck MD, Carter PH, Gardella TJ. The (1-14) fragment of parathyroid hormone (PTH) activates intact and amino-terminally truncated PTH-1 receptors. Mol Endocrinol. 1999;13:670–80.

    CAS  PubMed  Google Scholar 

  17. Shimizu M, Potts JT, Gardella TJ. Minimization of parathyroid hormone – novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J Biol Chem. 2000;275:21836–43.

    Article  CAS  PubMed  Google Scholar 

  18. Shimizu M, Carter P, Khatri A, Potts J, Gardella T. Enhanced activity in parathyroid hormone (1-14) and (1-11): novel peptides for probing the ligand-receptor interaction. Endocrinology. 2001;142:3068–74.

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu N, Guo J, Gardella T. Parathyroid hormone (1-14) and (1-11) analogs conformationally constrained by {alpha} aminoisobutyric acid mediate full agonist responses via the Juxtamembrane region of the PTH 1 receptor. J Biol Chem. 2001;276:49003–12.

    Article  CAS  PubMed  Google Scholar 

  20. Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF Jr, Hock J, Potts JT Jr, Kronenberg HM, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991;254:1024–6.

    Article  CAS  PubMed  Google Scholar 

  21. McCuaig KA, Clarke JC, White JH. Molecular cloning of the gene encoding the mouse parathyroid hormone/parathyroid hormone-related peptide receptor. Proc Natl Acad Sci U S A. 1994;91:5051–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang JI, Moon MJ, Park S, Kim DK, Cho EB, Ha N, Son GH, Kim K, Vaudry H, Seong JY. Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evol. 2013;30:1119–30.

    Article  CAS  PubMed  Google Scholar 

  23. On JS, Duan C, Chow BK, Lee LT. Functional pairing of class B1 ligand-GPCR in cephalochordate provides evidence of the origin of PTH and PACAP/glucagon receptor family. Mol Biol Evol. 2015;32:2048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li C, Chen M, Sang M, Liu X, Wu W, Li B. Comparative genomic analysis and evolution of family-B G protein-coupled receptors from six model insect species. Gene. 2013;519:1–12.

    Article  CAS  PubMed  Google Scholar 

  25. Cardoso JC, Felix RC, Power DM. Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs. PLoS One. 2014;9:e92220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pinheiro PL, Cardoso JC, Power DM, Canario AV. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol. 2012;12:110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nicholas S. “Characterization Of Pth Type-2 Receptor (pth2rb) and its endogenous ligand Pth2 in Zebrafish development”. Theses and dissertations. 2019;1131. https://ir.library.illinoisstate.edu/etd/1131.

  28. Rubin DA, Juppner H. Zebrafish express the common parathyroid hormone/parathyroid hormone-related peptide receptor (PTH1R) and a novel receptor (PTH3R) that is preferentially activated by mammalian and fugufish parathyroid hormone-related peptide. J Biol Chem. 1999;274:28185–90.

    Article  CAS  PubMed  Google Scholar 

  29. Hoare S, Usdin T. Molecular mechanisms of ligand-recognition by parathyroid hormone 1 (PTH1) and PTH2 receptors. Curr Pharm Des. 2001;7:689–713.

    Article  CAS  PubMed  Google Scholar 

  30. Cservenak M, Keller D, Kis V, Fazekas EA, Ollos H, Leko AH, Szabo ER, Renner E, Usdin TB, Palkovits M, Dobolyi A. A thalamo-hypothalamic pathway that activates oxytocin neurons in social contexts in female rats. Endocrinology. 2017;158:335–48.

    Article  CAS  PubMed  Google Scholar 

  31. Dimitrov EL, Kuo J, Kohno K, Usdin TB. Neuropathic and inflammatory pain are modulated by tuberoinfundibular peptide of 39 residues. Proc Natl Acad Sci U S A. 2013;110:13156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gellen B, Zelena D, Usdin TB, Dobolyi A. The parathyroid hormone 2 receptor participates in physiological and behavioral alterations of mother mice. Physiol Behav. 2017;181:51–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gardella TJ, Juppner H, Wilson AK, Keutmann HT, Abou-Samra AB, Segre GV, Bringhurst FR, Potts JT Jr, Nussbaum SR, Kronenberg HM. Determinants of [Arg2]PTH-(1-34) binding and signaling in the transmembrane region of the parathyroid hormone receptor. Endocrinology. 1994;135:1186–94.

    Article  CAS  PubMed  Google Scholar 

  34. Juppner H, Schipani E, Bringhurst FR, McClure I, Keutmann HT, Potts JT, Kronenberg HM, Abousamra AB, Segre GV, Gardella TJ. The extracellular amino-terminal region of the parathyroid-hormone (PTH)/PTH-related peptide receptor determines the binding-affinity for carboxyl-terminal fragments of PTH-(1-34). Endocrinology. 1994;134:879–84.

    Article  CAS  PubMed  Google Scholar 

  35. Lee C, Luck MD, Juppner H, Potts JT Jr, Kronenberg HM, Gardella TJ. Homolog-scanning mutagenesis of the parathyroid hormone (PTH) receptor reveals PTH-(1-34) binding determinants in the third extracellular loop. Mol Endocrinol. 1995;9:1269–78.

    CAS  PubMed  Google Scholar 

  36. Mannstadt M, Luck MD, Gardella TJ, Juppner H. Evidence for a ligand interaction site at the amino-terminus of the parathyroid hormone (PTH)/PTH-related protein receptor from cross-linking and mutational studies. J Biol Chem. 1998;273:16890–6.

    Article  CAS  PubMed  Google Scholar 

  37. Gensure R, Carter P, Petroni B, Juppner H, Gardella T. Identification of determinants of inverse agonism in a constitutively active parathyroid hormone/parathyroid hormone related peptide receptor by photoaffinity cross linking and mutational analysis. J Biol Chem. 2001;276:42692–9.

    Article  CAS  PubMed  Google Scholar 

  38. Gensure R, Gardella T, Juppner H. Multiple sites of contact between the carboxyl terminal binding domain of PTHrP (1 36) analogs and the amino terminal extracellular domain of the PTH/PTHrP receptor identified by photoaffinity cross linking. J Biol Chem. 2001;276:28650–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bisello A, Adams AE, Mierke D, Pellegrini M, Rosenblatt M, Suva L, Chorev M. Parathyroid hormone-receptor interactions identified directly by photocross-linking and molecular modeling studies. J Biol Chem. 1998;273:22498–505.

    Article  CAS  PubMed  Google Scholar 

  40. Greenberg Z, Bisello A, Mierke D, Rosenblatt M, Chorev M. Mapping the bimolecular interface of the parathyroid hormone (PTH) PTH1 receptor complex: spatial proximity between Lys(27) (of the hormone principal binding domain) and Leu(261) (of the first extracellular loop) of the human PTH1 receptor. Biochemistry. 2000;39:8142–52.

    Article  CAS  PubMed  Google Scholar 

  41. Ehrenmann J, Schoppe J, Klenk C, Rappas M, Kummer L, Dore AS, Pluckthun A. High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nat Struct Mol Biol. 2018;25:1086–92.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao L-H, Ma S, Sutkeviciute I, Shen D-D, Zhou XE, de Waal PW, Li C-Y, Kang Y, Clark LJ, Jean-Alphonse FG, White AD, Yang D, Dai A, Cai X, Chen J, Li C, Jiang Y, Watanabe T, Gardella TJ, Melcher K, Wang M-W, Vilardaga J-P, Xu HE, Zhang Y. Structure and dynamics of the active human parathyroid hormone receptor-1. Science. 2019;364:148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shimizu M, Joyashiki E, Noda H, Watanabe T, Okazaki M, Nagayasu M, Adachi K, Tamura T, Potts JT Jr, Gardella TJ, Kawabe Y. Pharmacodynamic actions of a long-acting PTH analog (LA-PTH) in thyroparathyroidectomized (TPTX) rats and Normal monkeys. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2016;7:1405–12.

    Article  CAS  Google Scholar 

  44. de Graaf C, Song G, Cao C, Zhao Q, Wang MW, Wu B, Stevens RC. Extending the structural view of class B GPCRs. Trends Biochem Sci. 2017;42:946–60.

    Article  PubMed  CAS  Google Scholar 

  45. Pioszak AA, Parker NR, Suino-Powell K, Xu HE. Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem. 2008;283:32900–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pioszak AA, Parker NR, Gardella TJ, Xu HE. Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J Biol Chem. 2009;284:28382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dean T, Vilardaga JP, Potts JT Jr, Gardella TJ. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol. 2008;22:156–66.

    Article  CAS  PubMed  Google Scholar 

  48. Shimizu M, Carter PH, Gardella TJ. Autoactivation of type-1 parathyroid hormone receptors containing a tethered ligand. J Biol Chem. 2000;275:19456–60.

    Article  CAS  PubMed  Google Scholar 

  49. Wein MN, Liang Y, Goransson O, Sundberg TB, Wang J, Williams EA, O’Meara MJ, Govea N, Beqo B, Nishimori S, Nagano K, Brooks DJ, Martins JS, Corbin B, Anselmo A, Sadreyev R, Wu JY, Sakamoto K, Foretz M, Xavier RJ, Baron R, Bouxsein ML, Gardella TJ, Divieti-Pajevic P, Gray NS, Kronenberg HM. SIKs control osteocyte responses to parathyroid hormone. Nat Commun. 2016;7:13176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zindel D, Engel S, Bottrill AR, Pin JP, Prezeau L, Tobin AB, Bunemann M, Krasel C, Butcher AJ. Identification of key phosphorylation sites in PTH1R that determine arrestin3 binding and fine-tune receptor signaling. Biochem J. 2016;473:4173–92.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Q, Xiao K, Liu H, Song L, McGarvey JC, Sneddon WB, Bisello A, Friedman PA. Site-specific polyubiquitination differentially regulates parathyroid hormone receptor-initiated MAPK signaling and cell proliferation. J Biol Chem. 2018;293:5556–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomsen AR, Plouffe B, Cahill TJ 3rd, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Heydenreich FM, Sunahara RK, Skiniotis G, Bouvier M, Lefkowitz RJ. GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell. 2016;166:907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G, Vilardaga JP. Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gbetagamma complex. Proc Natl Acad Sci U S A. 2013;110:1530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gidon A, Al-Bataineh MM, Jean-Alphonse FG, Stevenson HP, Watanabe T, Louet C, Khatri A, Calero G, Pastor-Soler NM, Gardella TJ, Vilardaga JP. Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nat Chem Biol. 2014;10:707–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McGarvey JC, Xiao K, Bowman SL, Mamonova T, Zhang Q, Bisello A, Sneddon WB, Ardura JA, Jean-Alphonse F, Vilardaga JP, Puthenveedu MA, Friedman PA. Actin-sorting nexin 27 (SNX27)-retromer complex mediates rapid parathyroid hormone receptor recycling. J Biol Chem. 2016;291:10986–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella TJ, Vilardaga JP. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol. 2011;7:278–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Q, Xiao K, Paredes JM, Mamonova T, Sneddon WB, Liu H, Wang D, Li S, McGarvey JC, Uehling D, Al-Awar R, Joseph B, Jean-Alphonse F, Orte A, Friedman PA. Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport. J Biol Chem. 2019;294:4546–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahon MJ, Cole JA, Lederer ED, Segre GV. Na+/H+ exchanger-regulatory factor 1 mediates inhibition of phosphate transport by parathyroid hormone and second messengers by acting at multiple sites in opossum kidney cells. Mol Endocrinol. 2003;17:2355–64.

    Article  CAS  PubMed  Google Scholar 

  59. Nagai S, Okazaki M, Segawa H, Bergwitz C, Dean T, Potts JT Jr, Mahon MJ, Gardella TJ, Juppner H. Acute down-regulation of sodium-dependent phosphate transporter NPT2a involves predominantly the cAMP/PKA pathway as revealed by signaling-selective parathyroid hormone analogs. J Biol Chem. 2011;286:1618–26.

    Article  CAS  PubMed  Google Scholar 

  60. Bisello A, Chorev M, Rosenblatt M, Monticelli L, Mierke DF, Ferrari SL. Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. J Biol Chem. 2002;277:38524–30.

    Article  CAS  PubMed  Google Scholar 

  61. Okazaki M, Ferrandon S, Vilardaga JP, Bouxsein ML, Potts JT Jr, Gardella TJ. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc Natl Acad Sci U S A. 2008;105:16525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maeda A, Okazaki M, Baron DM, Dean T, Khatri A, Mahon M, Segawa H, Abou-Samra AB, Jueppner H, Bloch KD, Potts JT Jr, Gardella TJ. Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH. Proc Natl Acad Sci U S A. 2013;110:5864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dean T, Linglart A, Mahon MJ, Bastepe M, Juppner H, Potts JT Jr, Gardella TJ. Mechanisms of ligand binding to the parathyroid hormone (PTH)/PTH-related protein receptor: selectivity of a modified PTH(1-15) radioligand for GalphaS-coupled receptor conformations. Mol Endocrinol. 2006;20:931–43.

    Article  CAS  PubMed  Google Scholar 

  64. Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ. Binding selectivity of abaloparatide for PTH-Type-1-receptor conformations and effects on downstream signaling. Endocrinology. 2016;157:141–9.

    Article  CAS  PubMed  Google Scholar 

  65. Bi R, Fan Y, Lauter K, Hu J, Watanabe T, Cradock J, Yuan Q, Gardella T, Mannstadt M. Diphtheria toxin- and GFP-based mouse models of acquired hypoparathyroidism and treatment with a long-acting parathyroid hormone analog. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2016;31:975–84.

    Article  CAS  Google Scholar 

  66. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, Alexandersen P, Zerbini CA, Hu MY, Harris AG, Fitzpatrick LA, Cosman F, Christiansen C, Investigators AS. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316:722–33.

    Article  CAS  PubMed  Google Scholar 

  67. Martin TJ. Bone biology and anabolic therapies for bone: current status and future prospects. J Bone Metab. 2014;21:8–20.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baron R, Hesse E. Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J Clin Endocrinol Metab. 2012;97:311–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R, Potts JT, Gardella TJ, Vilardaga JP. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol. 2009;5:734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chan AS, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD, Collins BM, Pavlos NJ. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol Biol Cell. 2016;27:1367–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lobingier BT, von Zastrow M. When trafficking and signaling mix: how subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic. 2019;20:130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winer KK. Advances in the treatment of hypoparathyroidism with PTH 1-34. Bone. 2019;120:535–41.

    Article  CAS  PubMed  Google Scholar 

  73. Hannan FM, Olesen MK, Thakker RV. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. Br J Pharmacol. 2018;175:4083–94.

    Article  CAS  PubMed  Google Scholar 

  74. Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest. 1990;86:1084–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Datta R, Waheed A, Shah GN, Sly WS. Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc Natl Acad Sci U S A. 2007;104:19989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guerreiro R, Bras J, Batista S, Pires P, Ribeiro MH, Almeida MR, Oliveira C, Hardy J, Santana I. Pseudohypoparathyroidism type I-b with neurological involvement is associated with a homozygous PTH1R mutation. Genes Brain Behav. 2016;15:669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adams A, Bisello A, Chorev M, Rosenblatt M, Suva L. Arginine 186 in the extracellular N-terminal region of the human parathyroid hormone 1 receptor is essential for contact with position 13 of the hormone. Mol Endocrinol. 1998;12:1673–83.

    Article  CAS  PubMed  Google Scholar 

  78. Carter P, Shimizu M, Luck M, Gardella T. The hydrophobic residues phenylalanine 184 and leucine 187 in the type-1 parathyroid hormone (PTH) receptor functionally interact with the amino-terminal portion of PTH (1-34). J Biol Chem. 1999;274:31955–60.

    Article  CAS  PubMed  Google Scholar 

  79. Maass PG, Wirth J, Aydin A, Rump A, Stricker S, Tinschert S, Otero M, Tsuchimochi K, Goldring MB, Luft FC, Bahring S. A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to brachydactyly type E. Hum Mol Genet. 2010;19:848–60.

    Article  CAS  PubMed  Google Scholar 

  80. Klopocki E, Hennig BP, Dathe K, Koll R, de Ravel T, Baten E, Blom E, Gillerot Y, Weigel JF, Kruger G, Hiort O, Seemann P, Mundlos S. Deletion and point mutations of PTHLH cause brachydactyly type E. Am J Hum Genet. 2010;86:434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang J, Wang Z, An Y, Wu C, Xu Y, Fu Q, Shen Y, Zhang Q. Exome sequencing reveals a novel PTHLH mutation in a Chinese pedigree with brachydactyly type E and short stature. Clin Chim Acta. 2015;446:9–14.

    Article  CAS  PubMed  Google Scholar 

  82. Thomas-Teinturier C, Pereda A, Garin I, Diez-Lopez I, Linglart A, Silve C, de Nanclares GP. Report of two novel mutations in PTHLH associated with brachydactyly type E and literature review. Am J Med Genet A. 2016;170:734–42.

    Article  CAS  PubMed  Google Scholar 

  83. Jamsheer A, Sowinska-Seidler A, Olech EM, Socha M, Kozlowski K, Pyrkosz A, Trzeciak T, Materna-Kiryluk A, Latos-Bielenska A. Variable expressivity of the phenotype in two families with brachydactyly type E, craniofacial dysmorphism, short stature and delayed bone age caused by novel heterozygous mutations in the PTHLH gene. J Hum Genet. 2016;61:457–61.

    Article  PubMed  CAS  Google Scholar 

  84. Bae J, Choi HS, Park SY, Lee DE, Lee S. Novel mutation in PTHLH related to brachydactyly type E2 initially confused with unclassical pseudopseudohypoparathyroidism. Endocrinol Metab (Seoul). 2018;33:252–9.

    Article  CAS  Google Scholar 

  85. Reyes M, Bravenboer B, Juppner H. A heterozygous splice-site mutation in PTHLH causes autosomal dominant shortening of metacarpals and metatarsals. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2019;34:482–9.

    Article  CAS  Google Scholar 

  86. Wysolmerski JJ, Cormier S, Philbrick WM, Dann P, Zhang JP, Roume J, Delezoide AL, Silve C. Absence of functional type 1 parathyroid hormone (PTH)/PTH-related protein receptors in humans is associated with abnormal breast development and tooth impaction. J Clin Endocrinol Metab. 2001;86:1788–94.

    CAS  PubMed  Google Scholar 

  87. Decker E, Stellzig-Eisenhauer A, Fiebig BS, Rau C, Kress W, Saar K, Ruschendorf F, Hubner N, Grimm T, Weber BH. PTHR1 loss-of-function mutations in familial, nonsyndromic primary failure of tooth eruption. Am J Hum Genet. 2008;83:781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamaguchi T, Hosomichi K, Narita A, Shirota T, Tomoyasu Y, Maki K, Inoue I. Exome resequencing combined with linkage analysis identifies novel PTH1R variants in primary failure of tooth eruption in Japanese. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2011;26:1655–61.

    Article  CAS  Google Scholar 

  89. Risom L, Christoffersen L, Daugaard-Jensen J, Hove HD, Andersen HS, Andresen BS, Kreiborg S, Duno M. Identification of six novel PTH1R mutations in families with a history of primary failure of tooth eruption. PLoS One. 2013;8:e74601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roth H, Fritsche LG, Meier C, Pilz P, Eigenthaler M, Meyer-Marcotty P, Stellzig-Eisenhauer A, Proff P, Kanno CM, Weber BH. Expanding the spectrum of PTH1R mutations in patients with primary failure of tooth eruption. Clin Oral Investig. 2014;18:377–84.

    Article  PubMed  Google Scholar 

  91. Jelani M, Kang C, Mohamoud HS, Al-Rehaili R, Almramhi MM, Serafi R, Yang H, Al-Aama JY, Naeem M, Alkhiary YM. A novel homozygous PTH1R variant identified through whole-exome sequencing further expands the clinical spectrum of primary failure of tooth eruption in a consanguineous Saudi family. Arch Oral Biol. 2016;67:28–33.

    Article  CAS  PubMed  Google Scholar 

  92. Subramanian H, Doring F, Kollert S, Rukoyatkina N, Sturm J, Gambaryan S, Stellzig-Eisenhauer A, Meyer-Marcotty P, Eigenthaler M, Wischmeyer E. PTH1R mutants found in patients with primary failure of tooth eruption disrupt G-protein signaling. PLoS One. 2016;11:e0167033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lanske B, Karaplis A, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize L, Ho C, Mulligan R, Abou-Samra A, Jüppner H, Segre G, Kronenberg H. PTH/PTHrP receptor in early development and indian hedgehog-regulated bone growth. Science. 1996;273:663–6.

    Article  CAS  PubMed  Google Scholar 

  94. Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC. Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci U S A. 1998;95:11846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ono W, Sakagami N, Nishimori S, Ono N, Kronenberg HM. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat Commun. 2016;7:11277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, Silve C. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest. 1998;102:34–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karaplis AC, He B, Nguyen MT, Young ID, Semeraro D, Ozawa H, Amizuka N. Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology. 1998;139:5255–8.

    Article  CAS  PubMed  Google Scholar 

  98. Nampoothiri S, Fernandez-Rebollo E, Yesodharan D, Gardella TJ, Rush ET, Langman CB, Juppner H. Jansen metaphyseal chondrodysplasia due to heterozygous H223R-PTH1R mutations with or without overt hypercalcemia. J Clin Endocrinol Metab. 2016;101:4283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saito H, Noda H, Gatault P, Bockenhauer D, Loke KY, Hiort O, Silve C, Sharwood E, Martin RM, Dillon MJ, Gillis D, Harris M, Rao SD, Pauli RM, Gardella TJ, Juppner H. Progression of mineral ion abnormalities in patients with Jansen metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 2018;103:2660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yin Y, de Waal PW, He Y, Zhao LH, Yang D, Cai X, Jiang Y, Melcher K, Wang MW, Xu HE. Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors. J Biol Chem. 2017;292:9865–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hopyan S, Gokgoz N, Poon R, Gensure RC, Yu C, Cole WG, Bell RS, Juppner H, Andrulis IL, Wunder JS, Alman BA. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet. 2002;30:306–10.

    Article  PubMed  Google Scholar 

  102. Couvineau A, Wouters V, Bertrand G, Rouyer C, Gerard B, Boon LM, Grandchamp B, Vikkula M, Silve C. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet. 2008;17:2766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Duchatelet S, Ostergaard E, Cortes D, Lemainque A, Julier C. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet. 2005;14:1–5.

    Article  CAS  PubMed  Google Scholar 

  104. Bauer W, Aub J, Albright F. Studies of calcium and phosphorus metabolism. V. A study of the bone trabeculae as a readily available reserve supply of calcium. J Exper Med. 1929;49:145–61.

    Article  CAS  Google Scholar 

  105. Reeve J, Hesp R, Williams D, Hulme P, Klenerman L, Zanelli JM, Darby AJ, Tregear GW, Parsons JA. Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet. 1976;1:1035–8.

    Article  CAS  PubMed  Google Scholar 

  106. Reeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OL, Courpron P, Edouard C, Klenerman L, Neer RM, Renier JC, Slovik D, Vismans FJ, Potts JT Jr. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J. 1980;280:1340–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang OH, Mitlak BH. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  108. Culler M, Dong J, Shen Y, Taylor J, Carlile L, Sullivan T, Batista I, Bonin P, Carlson M, Lauer J, Savola A, Kasprzyk P, Morgan B, Fisch C, Bécret A, Legrand J, Woon C-W. BIM-44058, a novel analog of PTHrP with enhanced bone building activity, but decreased calcium-mobilization potential. J Bone Mineral Res. 2001;16(Suppl 1):M460.

    Google Scholar 

  109. Dong J, Shen Y, Culler M, Taylor, Woon C, Legrand J, Morgan B, Chorev M, Rosenblatt M, Nakamoto C, Moreau J. Highly potent analogs of human parathyroid hormone and human parathyroid hormone-related protein. In: Houghten MLRA, editor. 17th American peptide symposium, peptides: the wave of the future. Norwell/San Diego: Kluwer Academic Publishers; 2001.

    Google Scholar 

  110. Mannstadt M, Clarke BL, Vokes T, Brandi ML, Ranganath L, Fraser WD, Lakatos P, Bajnok L, Garceau R, Mosekilde L, Lagast H, Shoback D, Bilezikian JP. Efficacy and safety of recombinant human parathyroid hormone (1-84) in hypoparathyroidism (REPLACE): a double-blind, placebo-controlled, randomised, phase 3 study. Lancet Diabetes Endocrinol. 2013;1:275–83.

    Article  CAS  PubMed  Google Scholar 

  111. Rosen HN, Lim M, Garber J, Moreau S, Bhargava HN, Pallotta J, Spark R, Greenspan S, Rosenblatt M, Chorev M. The effect of PTH antagonist BIM-44002 on serum calcium and PTH levels in hypercalcemic hyperparathyroid patients. Calcif Tissue Int. 1997;61:455–9.

    Article  CAS  PubMed  Google Scholar 

  112. Gardella TJ, Luck MD, Jensen GS, Schipani E, Potts JT Jr, Juppner H. Inverse agonism of amino-terminally truncated parathyroid hormone (PTH) and PTH-related peptide (PTHrP) analogs revealed with constitutively active mutant PTH/PTHrP receptors. Endocrinology. 1996;137:3936–41.

    Article  CAS  PubMed  Google Scholar 

  113. Carter PH, Petroni BD, Gensure RC, Schipani E, Potts JT Jr, Gardella TJ. Selective and nonselective inverse agonists for constitutively active type-1 parathyroid hormone receptors: evidence for altered receptor conformations. Endocrinology. 2001;142:1534–45.

    Article  CAS  PubMed  Google Scholar 

  114. Carter PH, Dean T, Bhayana B, Khatri A, Rajur R, Gardella TJ. Actions of the small molecule ligands SW106 and AH-3960 on the type-1 parathyroid hormone receptor. Mol Endocrinol. 2015;29:307–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, Kronenberg HM, Baron R, Schipani E. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest. 2001;107:277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Noda H, Guo J, Khatri A, Dean T, Reyes M, Armanin M, Brooks D, Martins J, Schipani E, Bouxsein M, Demay M, Potts J, Juppner H, Gardella T. An Inverse Agonist Ligand of the PTH Receptor Partially Rescues Skeletal Defects in a Mouse Model of Jansen’s Metaphyseal Chondrodysplasia. 2019. In press.

    Google Scholar 

  117. Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB, Kumar S, Nuttall ME. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone. 2006;39:1361–72.

    Article  CAS  PubMed  Google Scholar 

  118. Tamura T, Noda H, Joyashiki E, Hoshino M, Watanabe T, Kinosaki M, Nishimura Y, Esaki T, Ogawa K, Miyake T, Arai S, Shimizu M, Kitamura H, Sato H, Kawabe Y. Identification of an orally active small-molecule PTHR1 agonist for the treatment of hypoparathyroidism. Nat Commun. 2016;7:13384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Carter PH, Liu RQ, Foster WR, Tamasi JA, Tebben AJ, Favata M, Staal A, Cvijic ME, French MH, Dell V, Apanovitch D, Lei M, Zhao Q, Cunningham M, Decicco CP, Trzaskos JM, Feyen JH. Discovery of a small molecule antagonist of the parathyroid hormone receptor by using an N-terminal parathyroid hormone peptide probe. Proc Natl Acad Sci U S A. 2007;104:6846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McDonald IM, Austin C, Buck IM, Dunstone DJ, Gaffen J, Griffin E, Harper EA, Hull RA, Kalindjian SB, Linney ID, Low CM, Patel D, Pether MJ, Raynor M, Roberts SP, Shaxted ME, Spencer J, Steel KI, Sykes DA, Wright PT, Xun W. Discovery and characterization of novel, potent, non-peptide parathyroid hormone-1 receptor antagonists. J Med Chem. 2007;50:4789–92.

    Article  CAS  PubMed  Google Scholar 

  121. Inomata N, Akiyama M, Kubota N, Juppner H. Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxyl terminal region of PTH (1-84). Endocrinology. 1995;136:4732–40.

    Article  CAS  PubMed  Google Scholar 

  122. Whitfield J, Isaacs R, Chakravarthy B, Maclean S, Morley P, Willick G, Divieti P, Bringhurst F. Stimulation of protein kinase C activity in cells expressing human parathyroid hormone receptor by C- and N-terminally truncated fragments of parathyroid hormone 1-34. J Bone Miner Res. 2001;16:441–7.

    Article  CAS  PubMed  Google Scholar 

  123. Divieti P, John MR, Juppner H, Bringhurst FR. Human PTH-(7-84) inhibits bone resorption in vitro via actions independent of the type 1 PTH/PTHrP receptor. Endocrinology. 2002;143:171–6.

    Article  CAS  PubMed  Google Scholar 

  124. Lam M, Briggs L, Hu W, Martin T, Gillespie M, Jans D. Importin beta recognizes parathyroid hormone related protein with high affinity and mediates its nuclear import in the absence of importin alpha. J Biol Chem. 1999;274:7391–8.

    Article  CAS  PubMed  Google Scholar 

  125. Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, Gao P, Cantor T, Dusso A. A novel mechanism for skeletal resistance in uremia. Kidney Int. 2000;58:753–61.

    Article  CAS  PubMed  Google Scholar 

  126. Divieti P, Inomata N, Chapin K, Singh R, Juppner H, Bringhurst FR. Receptors for the carboxyl-terminal region of pth(1-84) are highly expressed in osteocytic cells. Endocrinology. 2001;142:916–25.

    Article  CAS  PubMed  Google Scholar 

  127. Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci U S A. 2013;110:5211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gardella TJ, et al. Receptors for Parathyroid Hormone (PTH) and PTH-related peptide. In: Bilezikian J, editor. Principles of bone biology. 4th ed: San Diego, USA; Academic Press, Elsevier. 2019. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Gardella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gardella, T.J. (2020). The Parathyroid Hormone Receptor Type 1. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics