Skip to main content

Harvesting and Cropping Yeast: Flocculation and Centrifugation

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

Abstract

Brewers employ a number of methods to crop their yeast which varies depending on whether one is dealing with traditional ale top-cropping, accepted lager bottom-cropping and cylindroconical fermentation systems (also called a Nathan fermenter) where the yeast (ale or lager) is recovered from the cone (sometimes repitched cone to cone), a non-flocculent culture where the yeast, still in suspension, is cropped with a centrifuge or a portion of the yeast, still in suspension, is blended into the fresh wort of a subsequent fermentation. With the traditional ale top-cropping fermentation system, although there are many variations of this process, a single, dual or multi-strain culture can be employed. Yeast quality is influenced by the manner that yeast is cropped and centrifuges play an important part in this regard. The cell wall structure of S. cerevisiae is the critical parameter involved in yeast flocculation. Details of the cell wall have already been discussed in Chap. 5. However, here it is discussed that the wall consists of an inner layer composed predominantly of β-glucose and chitin and a fibrillar outer layer consisting primarily of α-mannan (highly glycosylated) associated with mannoproteins. Yeast management and handling systems, including culture harvesting, are influential in determining the physiological status of yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramova N, Sertil O, Mehta S, Lowry CV (2001) Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183:2881–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alwine JC, Kemp DJ, Stark GR (1977) Methods for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amory DE, Genet MJ, Rouxhet PG (1988a) Application of XPS to the surface analysis of yeast cells. Surf Interface Anal 11:478–486

    Article  CAS  Google Scholar 

  • Amory DE, Rouxhet PG, Dufour JP (1988b) Flocculence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydrophobicity. J Inst Brew 94:79–84

    Article  CAS  Google Scholar 

  • Armstrong K, Bendiak D (2007) PYF malt: practical brewery observations of fermentability. MBAA Tech Q 44:40–46

    CAS  Google Scholar 

  • Ashbee R, Bignell EM (eds) (2010) Pathogenic yeasts. The yeast handbook. Springer, Berlin

    Google Scholar 

  • Axcell BC, van Nierop S, Vundla W (2000) Malt induced premature yeast flocculation. MBAA Tech Q 37:501–504

    CAS  Google Scholar 

  • Baker DA, Kirsop BH (1972) Flocculation in Saccharomyces cerevisiae as influenced by wort composition and by actidione. J Inst Brew 78:454–458

    Article  CAS  Google Scholar 

  • Bamforth C (2009) Beer: tap into the art and science of brewing. Oxford University Press, Oxford

    Google Scholar 

  • Bamforth C (2017) Freshness: practical guides to beer quality. American Society of Brewing Chemists, Minneapolis, MN

    Google Scholar 

  • Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dranginis AM (2005) Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Microbiol Lett 5:1151–1156

    CAS  Google Scholar 

  • Beavan MJ, Belki D, Stewart GG, Rose AH (1979) Changes in electrophoretic mobility and lytic enzyme activity associated with developments of flocculating ability in Saccharomyces cerevisiae. Can J Microbiol 25:888–895

    Article  CAS  PubMed  Google Scholar 

  • Bester MC, Pretorius IS, Bauer FF (2006) The regulation of Saccharomyces cerevisiae FLO gene expression and Ca 2+-dependent flocculation by Flo8p and Mss11p. Curr Genet 49:375–383

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya MK, Lustig AJ (2006) Telomere dynamics in genome stability. Trends Biochem Sci 31:114–122

    Article  CAS  PubMed  Google Scholar 

  • Bing J, Han PJ, Liu WQ, Wang QM, Bai FY (2014) Evidence for a Far East Asian origin of lager beer yeast. Curr Biol 24:R380–R381

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulton C (2011) Yeast handling. Brew Dist Int 7:7–10

    Google Scholar 

  • Boulton C (2012) Advances in analytical methodology in brewing. J Inst Brew 118:255–263; MBAA Tech Q 50:53–61

    Google Scholar 

  • Boulton C, Quain E (eds) (2001) Brewing yeast. In: Brewing yeast and fermentation. Blackwell Science, Oxford

    Google Scholar 

  • Briggs DE, McGuinness G (1992) Microbes on barley grains. J Inst Brew 98:249–255

    Google Scholar 

  • Calleja GB (1984) Microbial aggregation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Calleja GB (1987) Cell aggregation. In: Rose AH (ed) The yeasts, vol 2. Academic, London, pp 165–237

    Google Scholar 

  • Chen EH, Grote E, Mohler W, Vignery A (2007) Cell–cell fusion. FEBS Lett 581:2181–2193

    Article  CAS  PubMed  Google Scholar 

  • Chlup PH, Stewart GG (2011) Centrifuges in brewing. MBAA Tech Q 48:48–50

    Google Scholar 

  • Chlup PH, Bernard D, Stewart GG (2007a) The disc stack centrifuge and its impact on yeast and beer quality. J Am Soc Brew Chem 65:29–37

    CAS  Google Scholar 

  • Chlup PH, Conery J, Stewart GG (2007b) Detection of mannan from Saccharomyces cerevisiae by flow cytometry. J Am Soc Brew Chem 65:151–155

    CAS  Google Scholar 

  • Chlup PH, Wang T, Lee EG, Stewart GG (2007c) Assessment of the physiological status of yeast during high-and low-gravity wort fermentations determined by flow cytometry. MBAA Tech Q 44:286–295

    CAS  Google Scholar 

  • Chlup PH, Bernard D, Stewart GG (2008) Disc stack centrifuge operating parameters and their impact on yeast physiology. J Inst Brew 114:45–61

    Article  CAS  Google Scholar 

  • Claro FB, Rijsbrack K, Soares EV (2007) Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress. J Appl Microbiol 102:693–700

    Article  CAS  PubMed  Google Scholar 

  • Cooper DJ, Stewart GG, Bryce JH (2000) Yeast proteolytic activity during high and low gravity wort fermentations and its effect on head retention. J Inst Brew 106:197–201

    Article  Google Scholar 

  • Cormack B (2004) Can you adhere me now? Good. Cell 116:353–354

    Article  CAS  PubMed  Google Scholar 

  • D’Amore T, Panchal CJ, Stewart GG (1988) Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. J Appl Environ Microbiol 54:1471–1510

    Google Scholar 

  • Damas-Buenrostro LC, Gracia-González G, Hernández-Luna CE, Galán-Wong LJ, Pereyra-Alférez B, Sierra-Benavides JA (2008) Detection of FLO genes in lager and wild yeast strains. J Am Soc Brew Chem 66:184–187

    CAS  Google Scholar 

  • Day AW, Poon NH, Stewart GG (1975) Fungal fimbriae. III. The effect of flocculation in Saccharomyces. Can J Microbiol 21:558–564

    Article  CAS  PubMed  Google Scholar 

  • Dengis PB, Nélissen LR, Rouxhet PG (1995) Mechanisms of yeast flocculation: comparison of top- and bottom-fermenting strains. Appl Environ Microbiol 61:718–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietvorst J, Brandt A (2008) Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation. Yeast 25:891–901

    Article  CAS  PubMed  Google Scholar 

  • Dudbridge M (2011) Handbook of lean manufacturing in the food industry. Wiley, New York, NY

    Book  Google Scholar 

  • Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy AA (1958) Composite nature of the flocculation process of top and bottom strains of Saccharomyces. J Inst Brew 64:143–151

    Article  Google Scholar 

  • Eddy AA, Rudin AD (1958) Part of the yeast surface apparently involved in flocculation. J Inst Brew 64:19–21

    Article  Google Scholar 

  • Fidalgo M, Barrales RR, Jimenez J (2008) Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 25:879–889

    Article  CAS  PubMed  Google Scholar 

  • Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson BR (2011) 125th anniversary review: improvement of higher gravity brewery fermentation via wort enrichment and supplementation. J Inst Brew 117:268–284

    Article  CAS  Google Scholar 

  • Gilliland RB (1951) The flocculation characteristics of brewing yeasts during fermentation. Proceedings of the European Brewery Convention Congress, Brighton, pp 35–58

    Google Scholar 

  • Gilliland RB (1959) Determination of yeast viability. J Inst Brew 65:424

    Article  Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546, 563–546, 567

    Article  Google Scholar 

  • Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization and carbohydrate-binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins. Academic, Orlando, FL, p 52

    Google Scholar 

  • Gouveia C, Soares EV (2004) Pb2+ inhibits competitively flocculation of Saccharomyces cerevisiae. J Inst Brew 110:141–145

    Article  CAS  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinard J-X, Lewis MJ (1993) Study of the phenomenon by agglomeration in the yeast Saccharomyces cerevisiae. J Inst Brew 99:487–503

    Article  CAS  Google Scholar 

  • Guo B, Styles CA, Feng Q, Fink G (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci U S A 97:12158–12163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halina S, Nathan L (2007) Lectins. Springer, Netherlands

    Google Scholar 

  • Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell–surface variation in yeast. Cell 116:405–415

    Article  CAS  PubMed  Google Scholar 

  • Heine F, Stahl F, Sträuber H, Wiacek C, Benndorf D, Repenning C, Schmidt F, Scheper T, von Bergen M, Harms H, Müller S (2009) Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis and mRNA profiling. Cytometry A 75:140–147

    Article  PubMed  Google Scholar 

  • Helm E, Nohr B, Thome RSW (1953) Measurement of yeast flocculation and its significance in brewing. Wallerstein Laboratory Communications 16:315–326

    Google Scholar 

  • Hough JS (1959) Flocculation characteristics of strains present in some typical British pitching yeasts. J Inst Brew 65:479–482

    Article  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  PubMed  Google Scholar 

  • Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med Mycol 46:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter K-J, Miedl M, Kushmann B, Nitzsche F, Bryce JH, Stewart GG (2005) Detection of proteinases in Saccharomyces cerevisiae by flow cytometry. J Inst Brew 111:26–32

    Article  CAS  Google Scholar 

  • Inagaki H, Yamazumi K, Uehara H, Mochzuki K (1994) Determination of fermentation behaviour-malt evaluation system based on the original small scale fermentation test. Eur Brew Conv 23:111–136

    Google Scholar 

  • Ishimaru S, Kudo S, Hattan M, Yoshida T, Kataoka J (1967) Selection of small vessels for fermentation tests in the laboratory. Rep Res Lab Kirin Brew Co 10:61–65

    Google Scholar 

  • Jarvis P, Jefferson B, Parsons SA (2005) Measuring flocstructural characteristics. Environ Sci Biotechnol 4:1–18

    Article  CAS  Google Scholar 

  • Jibiki M, Ishibiki T, Yuuki T, Kagami N (2001) Application of polymerase chain reaction to determine the flocculation properties of brewer’s lager yeast. J Am Soc Brew 59:107–110

    CAS  Google Scholar 

  • Jibiki M, Sasaki K, Kagami N, Kawatsura K (2006) Application of a newly developed method for estimating the premature yeast flocculation potential of malt samples. J Am Soc Brew Chem 64:79–85

    CAS  Google Scholar 

  • Jin Y, Speers RA (2000) Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 58:108–116

    CAS  Google Scholar 

  • Jin Y, Ritcey LL, Speers RA (2001) Effect of cell surface hydrophobicity, charge, and zymolectin density on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 59:1–9

    CAS  Google Scholar 

  • Kaur R, Domergue R, Zupancic M, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    Article  CAS  PubMed  Google Scholar 

  • Kida K, Yamadaki M, Asno S, Nakata T, Sonoda Y (1989) The effect of aeration on stability of continuous ethanol fermentation by a flocculating yeast. J Ferment Bioeng 68:107–111

    Article  CAS  Google Scholar 

  • Kihn JC, Masy CL, Mestdagh MM (1988a) Yeast flocculation: competition between nonspecific repulsion and specific bonding in cell adhesion. Can J Microbiol 34:773–778

    Article  CAS  PubMed  Google Scholar 

  • Kihn JC, Masy CL, Mestdagh MM, Rouxhet PG (1988b) Yeast flocculation: factors affecting the measurement of flocculence. Can J Microbiol 34:779–781

    Article  CAS  PubMed  Google Scholar 

  • Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kock JLF, Venter P, Smith DP, Van Wyk PWJ, Botes PJ, Coetzee DJ, Pohl CH, Botha A, Ridel K-H, Nigam S (2000) A novel oxylipin-associated ‘ghosting’ phenomenon in yeast flocculation. Antonie Van Leeuwenhoek 77:401–406

    Article  CAS  PubMed  Google Scholar 

  • Koizumi H, Ogawa T (2005) Rapid and sensitive method to measure premature yeast flocculation activity in malt. J Am Soc Brew Chem 63:147–150

    CAS  Google Scholar 

  • Krogerus A, Gibson BR (2013) 125th anniversary review: diacetyl and its control during brewery fermentation. J Inst Brew 119:86–97

    CAS  Google Scholar 

  • Kruger L, Ryder DS, Alcock C, Murray JP (1982) Malt quality: prediction of malt fermentability. Part I. Tech Q Master Brew Assoc Am 19:45–51

    Google Scholar 

  • Kukuruzinska MA, Bergh MLE, Jackson BJ (1987) Protein glycosylation in yeast. Annu Rev Biochem 56:915–944

    Article  CAS  PubMed  Google Scholar 

  • Kuřec M, Baszczyňski M, Lehnert R, Brányik T (2009) Flow cytometry for age assessment of a yeast population and its application in beer fermentations. J Inst Brew 115:253–258

    Article  Google Scholar 

  • Lake JC, Speers RA (2008) A discussion of malt-induced premature yeast flocculation. MBAA Tech Q 4:253–262

    Google Scholar 

  • Lake JC, Speers RA, Porter AV, Gill TA (2008) Miniaturizing the fermentation assay: effect of fermentor size and fermentation kinetics on detection of premature yeast flocculation. J Am Soc Brew Chem 66:94–102

    CAS  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiper KA, Miedl M (2009) Colloidal stability of beer. In: Bamforth CW, Russell I, Stewart GG (eds) Beer: a quality perspective. Boston, MA, Elsevier, pp 111–161

    Chapter  Google Scholar 

  • Lewis MJ, Poerwantaro WM (1991) Release of haze material from the cell walls of agitated yeast. J Am Soc Brew Chem 49:43–46

    CAS  Google Scholar 

  • Lewis CW, Johnston JR, Martin PA (1976) The genetics of yeast flocculation. J Inst Brew 82:158–160

    Article  CAS  Google Scholar 

  • Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108:14539–14544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135:714–725

    Article  CAS  PubMed  Google Scholar 

  • Loney ER, Inglis PW, Sharp S, Pryde FE, Kent NA, Mellor J, Louis EJ (2009) Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae. Epigenetics Chromatin 2:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenz RT, Parks LW (1991) Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae. Lipids 26:598–603

    Article  CAS  PubMed  Google Scholar 

  • Lyons TP, Hough JS (1970a) Flocculation of brewer’s yeast. J Inst Brew 76:564–571

    Article  CAS  Google Scholar 

  • Lyons TP, Hough JS (1970b) The role of yeast cell walls in brewing. Brew Digest 45:52–60

    CAS  Google Scholar 

  • Machado MD, Santos MSF, Gouveia C, Soares HMVM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

    Article  CAS  PubMed  Google Scholar 

  • Mamvura TA, Paterson AE, Fanucchi D (2017) The impact of pipe geometry variations on hygiene and success of orbital welding of brewing industry equipment. J Inst Brew 123:81–97

    Article  CAS  Google Scholar 

  • Masy CL, Henquinet A, Mestdagh MM (1992) Flocculation of Saccharomyces cerevisiae: inhibition by sugars. Can J Microbiol 38:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Meaden PG (1996) DNA fingerprinting of brewer’s yeast. Ferment:9267–9272

    Google Scholar 

  • Miedl M, Stewart GG, Bryce JH, Kuchman B, Hutter K-H (2005) A novel procedure for the determining yeast pitching rates employing flow cytometry. In: Proceedings of the 29th European Brewery Convention Congress, Prague, CD Paper No 33

    Google Scholar 

  • Miki BLA, Poon NH, James AP, Seligy VL (1982a) Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150:878–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miki BLA, Poon NH, Seligy VL (1982b) Repression and induction of flocculation interactions in Saccharomyces cerevisiae. J Bacteriol 150:890–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller T, Krogan NJ, Dover J (2001) COMPASS: A complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98:12902–12907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortier A, Soares EV (2007) Separation of yeasts by addition of flocculent cells of Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1401–1407

    Article  Google Scholar 

  • Mundy RD, Cormack B (2009) Expression of Candida glabrata adhesions following exposure to chemical preservatives. J Infect Dis 199:1891–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan L (1930) Improvements in the fermentation and maturation of beers. J Inst Brew 36:538–544

    Article  CAS  Google Scholar 

  • Nayar A, Walker G, Wardrob F, Adya A (2017) Flocculation in industrial strains of Saccharomyces cerevisiae: role of cell wall polysaccharides and lectin-like receptors. J Inst Brew 123:211–218

    Article  CAS  Google Scholar 

  • Nishihara H, Toraya T, Fukui S (1982) Flocculation of cell-walls of brewers-yeast and effects of metal-ions, protein-denaturants and enzyme treatments. Arch Microbiol 131:112–115

    Article  CAS  Google Scholar 

  • Nishihara H, Kio K, Imamura M (2000) Possible mechanism of co-flocculation between non-flocculent yeasts. J Inst Brew 106:7–10

    Article  CAS  Google Scholar 

  • Ogata T, Izumikawa M, Kohno K, Shibata K (2008) Chromosomal location of Lg-FLO1 in bottom-fermenting yeast and the FLO5 locus of industrial yeast. J Appl Microbiol 105:1186–1198

    Article  CAS  PubMed  Google Scholar 

  • Ogur M, St. John R (1956) A differential and diagnostic plating method for population studies of respiration deficiency in yeast. J Bacteriol 72:500–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogur M, St. John R, Nagai S (1957) Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125:928–929

    Article  CAS  PubMed  Google Scholar 

  • Osumi M (2012) Visualization of yeast cells by electron microscopy. J Electron Microsc 61:343–365

    CAS  Google Scholar 

  • Panchal CJ, Whitney GK, Stewart GG (1984a) Susceptibility of Saccharomyces spp. and Schwanniomyces spp. to the aminoglycoside antibiotic G418. Appl Environ Microbiol 47:1164–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panchal CJ, Russell I, Sills AM, Stewart GG (1984b) Fermentation ethanol production – application of the new genetics to an ancient art. In: Proceedings of the 11th energy technology conference, Washington, DC, pp 1270–1273

    Google Scholar 

  • Panchal CJ, Russell I, Sills AM, Stewart GG (1984c) Genetic manipulation of brewing and related yeast strains. Food Technol 111:99–106

    Google Scholar 

  • Paula L, Birrer F (2006) Including public perspectives in industrial biotechnology and the biobased economy. J Agric Environ Ethics 19:253–267

    Article  PubMed  Google Scholar 

  • Peng X, Sun J, Iserentant D, Michiels C, Verachtert H (2001) Flocculation and coflocculation of bacteria by yeasts. Appl Microbiol Biotechnol 55:777–781

    Article  CAS  PubMed  Google Scholar 

  • Pomper S, Burkholder PR (1949) Studies on the biochemical genetics of yeast. Proc Natl Acad Sci U S A 35:456–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter G, Budge SM, Speers RA (2015) Flocculation, cell surface hydrophobicity and 3-OH oxylipins in the SMA strain of Saccharomyces pastorianus. J Inst Brew 121:31–37

    Article  CAS  Google Scholar 

  • Powell CD, Diacetis AN (2007) Long term serial repitching and the genetic and phenotypic stability of brewer’s yeast. J Inst Brew 113:67–74

    Article  CAS  Google Scholar 

  • Powell CD, Quain DE, Smart KA (2003) The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res 3:149–157

    Article  CAS  PubMed  Google Scholar 

  • Raspor P, Russell I, Stewart GG (1990) An update of zinc ion as an effector of flocculation in brewer’s yeast strains. J Inst Brew 96:303–305

    Article  CAS  Google Scholar 

  • Rees EMR, Stewart GG (1997a) The effects of divalent ions magnesium and calcium on yeast fermentation performance in conventional (12°P) and high (20°P) gravity worts in both static and shaking fermentations. In: Proceedings of the 26th congress – European Brewery Convention, Maestricht, The Netherlands, pp 461–468

    Google Scholar 

  • Rees EMR, Stewart GG (1997b) The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts. J Inst Brew 103:287–291

    Article  CAS  Google Scholar 

  • Rees EMR, Stewart GG (1998) Strain specific response of brewer’s yeast strains to zinc concentrations in conventional and high gravity worts. J Inst Brew 104:255–264

    Article  Google Scholar 

  • Rhymes MR, Smart KA (2001) Effect of storage conditions on the flocculation and cell wall characteristics of an ale brewing yeast strain. J Am Soc Brew Chem 59:32–38

    CAS  Google Scholar 

  • Richards M (1967) The use of giant-colony morphology for the differentiation of brewing yeasts. J Inst Brew 73:162–166

    Article  Google Scholar 

  • Rose AH (1980) Saccharomyces cerevisiae as a model eukaryote. In: Stewart GG, Russell I (eds) Current developments in yeast research. Pergamon, Toronto, pp 645–652

    Google Scholar 

  • Rose AH (1984) Physiology of cell aggregation: flocculation by Saccharomyces cerevisiae as a model system. In: Marshall CK (ed) Physiology of cell aggregation. Springer, New York, pp 323–335

    Google Scholar 

  • Rose AH, Harrison JF (1987) The yeasts, vol 1–5. Academic, London

    Google Scholar 

  • Rossouw D, Bagheri B, Setati ME, Bauer FF (2015) Co-flocculation of yeast species, a new mechanism to govern population dynamics in microbial ecosystems. PLoS One 10(8):e0136249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell I, Stewart GG (1980) Revised nomenclature of genes that control yeast flocculation. J Inst Brew 86:120–121

    Article  Google Scholar 

  • Russell I, Stewart GG (eds) (2014) Whisky: technology, production and marketing, 2nd edn. Academic (Elsevier), Boston, MA

    Google Scholar 

  • Russell I, Dowhanick T, Raspor P, Stewart GG (1989) Yeast flocculation – the influence of divalent ions. In: Proceedings of the 22nd congress – European Brewery Convention, Zurich. IRL Press, Oxford, pp 529–536

    Google Scholar 

  • Sato M, Watari J, Shinotsuka K (2001) Genetic instability in flocculation of bottom-fermenting yeast. J Am Soc Brew Chem 59:130–134

    CAS  Google Scholar 

  • Schlee C, Miedl M, Leiper KA, Stewart GG (2006) The potential of confocal imaging for measuring physiological changes in brewer’s yeast. J Inst Brew 112:134–147

    Article  CAS  Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Siebert KJ, Stenroos LE, Reid DS, Grabowski D (1987) Filtration difficulties resulting from damage to yeast during centrifugation. MBAA Tech Q 24:1–8

    Google Scholar 

  • Siero C, Reboredo NM, Villa TH (1994) Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae. J Ind Microbiol 14:461–466

    Article  Google Scholar 

  • Smart KA, Whisker S (1996) Effect of serial repitching on the fermentation properties and condition of brewing yeast. J Am Soc Brew Chem 54:41–44

    CAS  Google Scholar 

  • Smit G, Straver MH, Lugtenberg BJJ, Kijne JW (1992) Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58:3709–3714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soares EV (2010) Flocculation in Saccharomyces cerevisiae: a review. Appl Microbiol 110:1–18

    Article  CAS  Google Scholar 

  • Soares EV, Duarte AA (2002) Addition of nutrients induce a fast loss of flocculation in starved cells of Saccharomyces cerevisiae. Biotechnol Lett 24:1957–1960

    Article  CAS  Google Scholar 

  • Soares EV, Mota M (1996) Flocculation onset, growth phase, and genealogical age in Saccharomyces cerevisiae. Can J Microbiol 42:539–547

    Article  CAS  PubMed  Google Scholar 

  • Soares EV, Seynaeve J (2000a) The use of succinic acid, as a pH buffer, expands the potentialities of utilisation of a chemically defined medium in Saccharomyces cerevisiae flocculation studies. Biotechnol Lett 22:859–863

    Article  CAS  Google Scholar 

  • Soares EV, Seynaeve J (2000b) Induction of flocculation of brewer’s yeast strains of Saccharomyces cerevisiae by changing the calcium concentration and pH of culture medium. Biotechnol Lett 22:1827–1832

    Article  CAS  Google Scholar 

  • Soares E, Teixeira JA, Mota M (1991) Influence of aeration and glucose concentration in the flocculation of Saccharomyces cerevisiae. Biotechnol Lett 13:207–212

    Article  CAS  Google Scholar 

  • Soares EV, Teixeira JA, Mota M (1994) Effect of cultural and nutritional conditions on the control of flocculation expression in Saccharomyces cerevisiae. Can J Microbiol 40:851–857

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Kumar A (2012) An overview of autophagy and yeast pseudohyphal growth: integration of signaling pathways during nitrogen stress. Cells 1:263–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa MJ, Teixeira JA, Mota M (1992) Differences in the flocculation mechanism of Kluyveromyces marxianus and Saccharomyces cerevisiae. Biotechnol Lett 14:213–218

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  • Speers RA (2012) A review of yeast flocculation. In: Speers RA (ed) Proceedings of the 2nd international brewers symposium: yeast flocculation, vitality and viability. MBAA, St Paul, MN

    Google Scholar 

  • Speers RA (2016) Brewing fundamentals, Part 3: Yeast settling and flocculation. MBAA Tech Q 53:17–22

    Google Scholar 

  • Speers RA, Stokes S (2009) Effects of vessel geometry, fermenting volume and yeast repitching on fermenting beer. J Inst Brew 115:148–150

    Article  CAS  Google Scholar 

  • Speers RA, Durance TD, Odense P, Owen S, Tung MA (1993) Physical properties of commercial brewing yeast suspensions. J Inst Brew 99:159–164

    Article  Google Scholar 

  • Speers RA, Wan Y-Q, Jin Y, Stewart RJ (2006) Effects of fermentation parameters and cell wall properties on yeast flocculation. J Inst Brew 112:246–254

    Article  CAS  Google Scholar 

  • Sprague GF Jr, Thorner JW (1992) Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 657–744

    Google Scholar 

  • Stewart GG (1972) Co-flocculation of brewer’s yeast. MBAA Tech Q 9:25

    Google Scholar 

  • Stewart GG (1973) Recent developments in the characterization of brewery yeast strains. MBAA Tech Q 9:183–191

    Google Scholar 

  • Stewart GG (1974) Some thoughts on the microbiological aspects of brewing and other industries utilizing yeast. Adv Appl Microbiol 17:233–262

    Article  Google Scholar 

  • Stewart GG (1988) Twenty-five years of yeast research. Dev Ind Microbiol 29:1–21. SIM Charles Thom Award Lecture

    CAS  Google Scholar 

  • Stewart GG (1996) Yeast performance and management. The Brewer 82:211–215

    Google Scholar 

  • Stewart GG (2006) Studies on the uptake and metabolism of wort sugars during brewing fermentations. MBAA Tech Q 43:265–269

    CAS  Google Scholar 

  • Stewart GG (2009) The IBD horace brown medal lecture – forty years of brewing research. J Inst Brew 115:3–29

    Article  CAS  Google Scholar 

  • Stewart GG (2010a) MBAA award of merit lecture. A love affair with yeast. MBAA Tech Q 47:4–11

    Google Scholar 

  • Stewart GG (2010b) The ASBC award of distinction lecture – high gravity brewing and distilling – past experiences and future prospects. J Am Soc Brew Chem 68:1–9

    CAS  Google Scholar 

  • Stewart GG (2014a) Brewing intensification. American Society for Brewing Chemists, St. Paul, MN

    Google Scholar 

  • Stewart GG (2014b) The concept of nature – nurture applied to brewer’s yeast and wort fermentations. MBAA Tech Q 51:69–80

    Google Scholar 

  • Stewart GG (2014c) Yeast mitochondria – their influence on brewer’s yeast fermentation and medical research. MBAA Tech Q 51:3–11

    Google Scholar 

  • Stewart GG (2014d) Saccharomyces. In: Catt C, Tortorello ML (eds) Encyclopedia of food microbiology, vol 3, 2nd edn. Elsevier, Oxford, pp 297–315

    Chapter  Google Scholar 

  • Stewart GG (2015a) Seduced by yeast. J Am Soc Brew Chem 73:1–21

    CAS  Google Scholar 

  • Stewart GG (2015b) Yeast quality assessment, management and culture maintenance, Chap. 2. In: Hill AE (ed) Brewing microbiology: managing microbes, ensuring quality and valorising waste. Elsevier, Oxford, pp 11–29

    Chapter  Google Scholar 

  • Stewart GG, Garrison IF (1972) Some observations on co-flocculation in Saccharomyces cerevisiae. Am Soc Brew Chem Proc:118–131

    Google Scholar 

  • Stewart GG, Goring TE (1976) Effect of some monovalent and divalent metal ions on the flocculation of brewer’s yeast strains. J Inst Brew 82:341–342

    Article  CAS  Google Scholar 

  • Stewart GG, Murray JP (2011) Using brewing science to make good beer. MBAA Tech Q 48:13–19

    CAS  Google Scholar 

  • Stewart GG, Murray JP (2012) Brewing intensification – successes and failures. MBAA Tech Q 49:111–120

    CAS  Google Scholar 

  • Stewart GG, Russell I (1977) The identification, characterization, and mapping of a gene for flocculation in Saccharomyces sp. Can J Microbiol 23:441–447

    Article  CAS  PubMed  Google Scholar 

  • Stewart GG, Russell I (1981) Yeast flocculation. In: Pollock JAR (ed) Brewing science, food science and technology. Academic, New York, pp 61–92

    Google Scholar 

  • Stewart GG, Russell I (1983) Aspects of the biochemistry and genetics of sugar and carbohydrate uptake by yeasts. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics: fundamental and applied aspects. Springer, New York, pp 461–484

    Chapter  Google Scholar 

  • Stewart GG, Russell I (1986) The relevance of the flocculation properties of yeast in today’s brewing industry. In: European Brewing Convention – Symposium on ‘Brewers’ yeast, Vuoranta, Helsinki, Finland, pp 24–25, 53–68

    Google Scholar 

  • Stewart GG, Russell I (2009) An introduction to brewing science and technology, Series lll, Brewer’s yeast, 2nd edn. The Institute of Brewing and Distilling, London

    Google Scholar 

  • Stewart GG, Russell I, Garrison IF (1973) Further studies on flocculation and co-flocculation in brewer’s yeast strains. Am Soc Brew Chem Proc 31:100–106

    Google Scholar 

  • Stewart GG, Russell I, Garrison IF (1974) Factors influencing the flocculation of brewers’ yeast strains. MBAA Tech Q II:xiii

    Google Scholar 

  • Stewart GG, Russell I, Garrison IF (1975a) Some considerations of the flocculation characteristics of ale and lager yeast strains. J Inst Brew 81:248–257

    Article  CAS  Google Scholar 

  • Stewart GG, Russell I, Goring IF (1975b) Nature-nurture anomalies – further studies in yeast flocculation. Am Soc Brew Chem Proc 33:137–147

    Google Scholar 

  • Stewart GG, Goring TE, Russell I (1983a) (issued October 11, 1983) Yeast strain for fermenting high plato value wort. US Patent 4,409,246

    Google Scholar 

  • Stewart GG, Panchal CJ, Russell I (1983b) Current developments in the genetic manipulation of brewing yeast strains – a review. J Inst Brew 89:170–188

    Article  CAS  Google Scholar 

  • Stewart GG, Murray CR, Panchal CJ, Russell I, Sills AM (1984a) The selection and modification of brewer’s yeast strains. Food Microbiol 1:289–302

    Article  Google Scholar 

  • Stewart GG, Panchal CJ, Russell I, Sills AM (1984b) Biology of ethanol producing microorganisms. CRC Crit Rev Biotechnol 1:161–188

    Article  CAS  Google Scholar 

  • Stewart GG, Russell I, Panchal CJ (1984c) Genetically stable allopolyploid somatic fusion product useful in the production of fuel alcohols. Australian Patent: 570,260 (issued August 15, 1984)

    Google Scholar 

  • Stewart GG, Hill A, Russell I (2013) 125th anniversary review - developments in brewing and distilling yeast strains. J Inst Brew 119:202–220

    Article  CAS  Google Scholar 

  • Stoupis T, Stewart GG, Stafford RA (2002) Mechanical agitation and rheological considerations of ale yeast slurry. J Am Soc Brew Chem 60:58–62

    CAS  Google Scholar 

  • Stratford M (1989) Yeast flocculation: calcium specificity. Yeast 5:487–496

    Article  CAS  Google Scholar 

  • Stratford M (1992a) Lectin-mediated aggregation of yeasts- yeast flocculation. Biotechnol Genet Eng Rev 10:283–341

    Article  CAS  PubMed  Google Scholar 

  • Stratford M (1992b) Yeast flocculation – a new perspective. Adv Microb Physiol 33:1–71

    Article  CAS  Google Scholar 

  • Stratford M (1992c) Yeast flocculation – receptor definition by mnn mutants and concanavalin-A. Yeast 8:635–645

    Article  CAS  PubMed  Google Scholar 

  • Stratford M (1992d) Yeast flocculation: calcium specificity. Yeast 5:487–496

    Article  Google Scholar 

  • Stratford M (1996) Induction of flocculation in brewing yeasts by change in pH value. FEMS Microbiol Lett 136:13–18

    Article  CAS  PubMed  Google Scholar 

  • Stratford M, Assinder S (1991) Yeast flocculation: Flo1 and new Flo phenotypes and receptor structure. Yeast 7:559–574

    Article  CAS  PubMed  Google Scholar 

  • Stratford M, Keenan MMJ (1988) Yeast flocculation: Quantification. Yeast 4:107–115

    Article  CAS  PubMed  Google Scholar 

  • Strauss CJ, Kock JLF, van Wyk PWJ, Lodolo EJ, Pohl CH, Botes PJ (2005) Bioactive oxylipins in Saccharomyces cerevisiae. J Inst Brew 111:304–308

    Article  CAS  Google Scholar 

  • Strauss CJ, van Wyk PWJ, Lodolo EJ, Botes PJ, Pohl CH, Nigam S, Kock JLF (2007) Mitochondrial associated yeast flocculation – the effect of acetylsalicylic acid. J Inst Brew 113:42–47

    Article  CAS  Google Scholar 

  • Straver MH, Aar PCVD, Smit G, Kijne JW (1993) Determinants of flocculence of brewer’s yeast during fermentation in wort. Yeast 9:527–532

    Article  CAS  PubMed  Google Scholar 

  • Taylor NW, Orton WI (1978) Aromatic compounds and sugars in flocculation of Saccharomyces cerevisiae. J Inst Brew 84:113–114

    Article  CAS  Google Scholar 

  • Teixeira JM, Teixeira JA, Mota M, Manuela M, Guerra B, Machado Cruz JM, S’Almeida AM (1991) The influence of cell wall composition of a brewer’s flocculant lager yeast on sedimentation during successive industrial fermentations. In: Proceedings of the European Brewery Convention Congress, Lisbon, pp 241–248

    Google Scholar 

  • Teunissen AWRH, Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Teunissen AWRH, Holub E, Van Der Hucht J, Van Den Berg JA, Steensma HY (1993) Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9:423–427

    Article  CAS  PubMed  Google Scholar 

  • Teunissen AWRH, Van Den Berg JA, Teunissen SHY (1995) Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae. Yeast 11:435–446

    Article  CAS  PubMed  Google Scholar 

  • Thorne RSW (1951) Some aspects of yeast flocculence. In: Proceedings of the European Brewery Convention Congress, Brighton, pp 21–34

    Google Scholar 

  • van Hamersveld EH, van der Lans RG, Luyben KC (1997) Quantification of brewers’ yeast flocculation in a stirred tank: effect of physical parameters on flocculation. Biotechnol Bioeng 56:190–200

    Article  PubMed  Google Scholar 

  • van Holle A, Machado MD, Soares EV (2011) Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity. Appl Microbiol Biotechnol 93:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Van Lersel MFM, Meersman E, Arntz M, Rombouts FM, Abee T (1998) Effect of environmental conditions on flocculation and immobilisation of brewer’s yeast during production of alcohol-free beer. J Inst Brew 104:131–136

    Article  Google Scholar 

  • Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Article  PubMed  CAS  Google Scholar 

  • Van Mulders SE, Ghequire M, Daenen L, Verbelen PJ, Verstrepen KJ, Delvaux FR (2010) Flocculation gene variability in industrial brewer’s yeast strains. Appl Microbiol Biotechnol 88:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Van Nierop SNE, Cameron-Clarke A, Axcell BC (2004) Enzymatic generation of factors malt responsible for premature yeast flocculation. J Am Soc Brew Chem 62:108–116

    Google Scholar 

  • Van Nierop SNE, Rautenbach M, Axcell BC, Cantrell IC (2006) The impact of microorganisms on barley and malt quality – a review. J Am Soc Brew Chem 62:69–79

    Google Scholar 

  • Verstrepen KJ, Fink GR (2009) Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu Rev Genet 43:1–24

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Bauer FF, Winderickx J, Derdelinckx G, Dufour JP, Thevelein JM, Pretorius IS, Delvaux FR (2001a) Genetic modification of Saccharomyces cerevisiae: fitting the modern brewer’s needs. Cerevisia 26:89–97

    CAS  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS (2001b) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76

    CAS  Google Scholar 

  • Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:986–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidgren V, Londesborough J (2011) 125th anniversary review: yeast flocculation and sedimentation in Brewing. J Inst Brew 117:475–487

    Article  CAS  Google Scholar 

  • Wang A, Raniga PP, Lane S, Lu Y, Liu H (2009) Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Mol Cell Biol 29:4406–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela M, Airaksinen U, Jaatinen R (1994) Molecular cloning and analysis of the yeast flocculation gene FlO1. Yeast 10:211–225

    Article  CAS  PubMed  Google Scholar 

  • Watari J, Sato M, Ogawa M, Shinotsuka K (1999) Genetic and physiological instability of brewing yeast. Eur Brew Conv Monogr 28:148–160

    Google Scholar 

  • White FH, Kidney E (1979) The influence of yeast strain on beer spoilage bacteria. Proceedings of the 17th European Brewery Convention Congress, Berlin, DSW, Dordrecht, The Netherlands, pp 801–815

    Google Scholar 

  • Wickerham LJ (1951) Taxonomy of yeasts. Tech Bull 27.8. Dep Agric no 1029

    Google Scholar 

  • Wightman P, Quain DE, Meaden PG (1996) Analysis of production brewing strains of yeast by DNA fingerprinting. Lett Appl Microbiol 22:90–94

    Article  CAS  PubMed  Google Scholar 

  • Wilcocks KL, Smart KA (1995) The importance of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing. FEMS Microbiol Lett 15:293–297

    Article  Google Scholar 

  • Williams LJ, Barnett GR, Ristow JL, Pitkin J, Perriere M, Davis RH (1992) Ornithine decarboxylase gene of Neurospora crassa: isolation, sequence and polyamine-mediated regulation of its mRNA. Mol Cell Biol 12:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarattini RA, Williams JW, Ernandes JR, Stewart GG (1993) Bacterial-induced flocculation in selected brewing strains of Saccharomyces. Cerevisia Biotechnol 18:65–70

    Google Scholar 

  • Zhao XQ, Bai FW (2009) Yeast flocculation: new story in fuel ethanol production. Biotechnol Adv 27:849–856

    Article  CAS  PubMed  Google Scholar 

  • Zhuang S, Smart K, Powell C (2017) Impact of extracellular osmolarity on Saccharomyces yeast population during brewing fermentation. J Am Soc Brew Chem 2017:244–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). Harvesting and Cropping Yeast: Flocculation and Centrifugation. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_13

Download citation

Publish with us

Policies and ethics