Skip to main content

Arbuscular Mycorrhizal Fungi as Biocontrol Agents for Parasitic Nematodes in Plants

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

The use of synthetic fertilizers and pesticides has not only caused damage to environment but has caused detrimental impacts on the health of people. In order to feed the ever growing population and prevent environmental contamination and decrease the impact on human health organic farming is being promoted all over the world. The use of Arbuscular mycorrhiza fungi to boost agricultural productivity is considered a better alternative as it has strong influence on plant interactions by aiding plants in resource acquisition, disease suppression, and tolerance to soil pollution and play a decisive role in plant development. It also enhance the supply of water and nutrients (phosphate and nitrogen), to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus; hence the nutritional exchange is bidirectional. AMF acts as a biocontrol agent for various crops and thus reduces the burden of pesticides in agro-ecosystems. Advance research is needed to develop farming systems that optimize the use of natural resources such as mycorrhizal fungi for sustainable agricultural production. The present chapter is an attempt to study the role of AMF in controlling different plant parasitic nematodes along with its important advantages for the crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alban R, Guerrero R, Toro M (2013) Interactions between a root knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). Am J Plant Sci 4:19–23

    Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    CAS  PubMed  Google Scholar 

  • Atilano RA, Menge JA, Van Gundy SD (1981) Interactions between Meloidogyne arenaria and Glomus fasciculatum in grape. J Nematol 13:52–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Azaizeh HA, Marschner H, Romheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327

    Google Scholar 

  • Azcon-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Chuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. From genes to bioproducts. Birkhauser, Berlin, pp 187–197

    Google Scholar 

  • Bajaj R, Hu W, Huang Y, Chen S, Prasad R, Varma A, Bushley K (2015) The beneficial root endophyte Piriformospora indica reduces egg density of the soybean cyst nematode. Bioll Control 90:193–199

    Google Scholar 

  • Bajaj R, Prasad R, Varma A, Bushley KE (2017) The role of arbuscular mycorrhizal fungi and the mycorrhizal-like fungus Piriformospora indica in biocontrol of plant parasitic nematodes. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, Cham, pp 43–56

    Google Scholar 

  • Bansal M, Mukerji KG (1996) Root exudates and its rhizosphere biology. In: Mukerji KG, Singh VP, Dwivedi S (eds) Concepts in applied microbiology and biotechnology. Adita Books, New Delhi, pp 79–119

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhaeuser, Basel, pp 71–85

    Google Scholar 

  • Borie FR, Rubio R, Morales A, Castillo C (2000) Relationships between arbuscular mycorrhizal hyphal density and glomalin production with physical and chemical characteristics of soils under no-tillage. Rev Chil Hist Nat 73:749–756

    Google Scholar 

  • Calvet C, Pinochet J, Hernández-Dorrego A, Estaún V, Camprubí A (2001) Field microplot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10:295–300

    Google Scholar 

  • Caron M (1989) Potential use of mycorrhizae in control of soil-borne diseases. Can J Plant Pathol 11:177–179

    Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability and soil aggregates in organic tomato production. Plant Soil 282:209–225

    CAS  Google Scholar 

  • Cipollini D, Rigsby CM, Barto EK (2012) Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 38:714–727

    CAS  PubMed  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    CAS  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    CAS  Google Scholar 

  • de la Peña E, Rodriguez-Echevarria S, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root -feeding nematodes by mycorrhizal fungi in the dune grass, Ammophila arenaria. New Phytol 169:829–840

    PubMed  Google Scholar 

  • Dehariya K, Shukla A, Sheikh IA, Vyas D (2015) Trichoderma and arbuscular mycorrhizal fungi based biocontrol of Fusarium udum Butler and their growth promotion effects on pigeon pea. J Agric Sci Tech 17:505–517

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Del Val C, Barea JM, Azcòn-Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11:261–269

    Google Scholar 

  • Dubey RK, Shukla N (2014) Organic farming: an eco-friendly technology and its importance and opportunities in the sustainable development. Int J Innov Res Sci Eng Tech 3:10726–10734

    Google Scholar 

  • Dugassa GD, von Allen H, Schonbeck F (1996) Effect of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogen. Plant Soil 185:173–182

    CAS  Google Scholar 

  • Dwivedi SK, Dwivedi P (2002) Mycorrhizae in ecosystems: an eco-friendly approach for improved plant growth. In: Rajak RC (ed) Biotechnology of microbes and sustainable utilization. Scientific Publishers, Jodhpur, pp 24–32

    Google Scholar 

  • Eason WR, Scullion J, Scott EP (1999) Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agric Ecosys Environ 73:245–255

    Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    CAS  PubMed  Google Scholar 

  • Elsen A, Baimey H, Swennen R, Waele DD (2003) Relative mycorrhizal dependency and mycorrhiza -nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant Soil 256:303–313

    CAS  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, Waele DD (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp. a systemic effect. Mycorrhiza 18:251–256

    CAS  PubMed  Google Scholar 

  • Facelli E, Smith SE, Facelli JM, Christophersen HM, Smith FA (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185:1050–1061

    PubMed  Google Scholar 

  • Ferraz L, Brown D (2002) An introduction to nematodes-plant nematology. Pensoft, Sofia

    Google Scholar 

  • Franzluebbers AJ, Wright SF, Stuedemann JA (2000) Soil aggregation and glomalin under pastures in the southern Piedmont, USA. Soil Sci Soc Am J 64:1018–1026

    CAS  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons- Kühnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    PubMed  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Goicoechea N, Garmendia I, Sánchez-Díaz M, Aguirreolea J (2010) Review. Arbuscular mycorrhizal fungi (AMF) as bioprotector agents against wilt induced by Verticillium spp. in pepper. Span J Agric Res 8(S1):S25–S42

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Google Scholar 

  • Graham JH (2000) Assessing cost of arbuscular mycorrhizal symbiosis in agroecosystems. In: Podila GK, Douds DD Jr (eds) Current advances in mycorrhizal research. APS Press, St. Paul, NM, pp 127–140

    Google Scholar 

  • Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi–parasite–host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum Sorghum bicolor (L.) Moench. Mycorrhiza 13:277–281

    PubMed  Google Scholar 

  • Hajra N, Shahina F, Firoza K (2013) Biocontrol of root-knot nematode by arbuscular mycorrhizal fungi in Luffa cylindrica. Pak J Nematol 31:77–84

    Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of Arbuscular Mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci 60:149–157

    CAS  Google Scholar 

  • Hasan N, Jain RK (1987) Parasitic nematodes and vesicular-arbuscular mycorrhizal (VAM) fungi associated with berseem (Trifolium alexandrinum L.) in the Bundelkhan region. Indian J Nematol 17:184–188

    Google Scholar 

  • Hawkins HJ, George E (2001) Reduced N15-nitrogen transport through arbuscular mycorrhizal hyphae to Triticum aestivum L. supplied with ammonium vs. nitrate nutrition. Ann Bot 87:303–311

    CAS  Google Scholar 

  • Hearne SJ (2009) Control-the Striga conundrum. Pest Manage Sci 65:603–614

    CAS  Google Scholar 

  • Hooker JE, Jaizme-Vega M, Alkinson D (1994) Biocontrol of plant pathogen using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schhepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser, Basel, pp 191–209

    Google Scholar 

  • Hussey RS, Roncadori RW (1982) Vesicular arbuscular mycorrhizal fungi may limit nematode activity and improve plant growth. Plant Dis 66:9–14

    Google Scholar 

  • Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soyabean and lentil. Int J Phytoremed 4(3):205–221

    CAS  Google Scholar 

  • John A, Bai H (2004) Evaluation of VAM for management of root knot nematodes in Brinjal. Indian J Nematol 34:22–25

    Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    CAS  PubMed  Google Scholar 

  • Kantharaju V, Krishnappa K, Ravichandra NG, Karuna K (2005) Management of root-knot fungus, Glomus fasciculatum. Indian J Nematol 35:32–36

    Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare Mill. on mycorrhizal inoculation supplemented with P-fertilizer. Biores Technol 93:307–311

    CAS  Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2013) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza 23:279–288

    CAS  PubMed  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, van Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crop Res 91:51–61

    Google Scholar 

  • Lendzemo VW, Van Ast A, Kuyper TW (2006) Can arbuscular mycorrhizal fungi contribute to Striga management on cereals in Africa? Outlook Agric 35:307–311

    Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, Ast AV (2007) Colonization by arbuscular mycorrhizal fungi of Sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Sign Behav 2:58–62

    Google Scholar 

  • Leta A, Selvaraj T (2013) Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). J Plant Pathol Microbiol 4:1–6

    Google Scholar 

  • Li AR, Smith SE, Smith FA, Guan KY (2012) Inoculation with arbuscular mycorrhizal fungi suppresses initiation of haustoria in the root hemiparasite Pedicularis tricolor. Ann Bot 109:1075–1080

    PubMed  PubMed Central  Google Scholar 

  • Li AR, Guan KY, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann Bot 112:1089–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. The American Phytopathological Society, St. Paul, MN, pp 1–27

    Google Scholar 

  • Louarn J, Carbonne F, Delavault P, Becard G, Rochange S (2012) Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. PLoS ONE 7(11):e49273. https://doi.org/10.1371/journal.pone.0049273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marro N, Paola L, Cabello M, Doucet ME, Becerra AG (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57:668–674

    Google Scholar 

  • Marschner P, Crowley D, Lieberei R (2001) Arbuscular mycorrhizal infection changes bacterial 16s DNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    CAS  PubMed  Google Scholar 

  • Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta: I. diversity of fungal taxa. New Phytol 138:117–129

    Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influence on population of rhizospher or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Boil Biochem 18:191–196

    Google Scholar 

  • Narayanan S (2005) Organic farming in India: relevance, problems and constraints. Occasional paper No. 38, Department of Economic Analysis and Research, National Bank for Agriculture and Rural Development, Mumbai

    Google Scholar 

  • National Organic Standards Board (1997) United States department of agriculture national organic standards board. Definition of “Organic”. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    PubMed  Google Scholar 

  • Omolara OM (2014) Effects of mycorrhizal inoculant and organic mulches on nematode damage to cooking banana. J Biol Agric Health 19:81–86

    Google Scholar 

  • Pandey RK, Goswami BK, Singh S (2004) Influence of soil pH on population dynamics of Tylenhulus semipenetrans infesting citrus and its biomanagement using AM fungi. Int J Nematol 14:174–176

    Google Scholar 

  • Paulitz TC, Linderman RG (1991) Mycorrhizal interactions with soil organisms. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology: soil and plants. Marcel Dekker, New York, pp 77–129

    Google Scholar 

  • Powell CL, Bagyaraj DJ (1984) VA Mycorrhiza. CRC Press, Boca Raton, FL. Schenek, NC

    Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-Mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    CAS  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytot 29:611–618

    Google Scholar 

  • Reddy MS, Wang Q (2011) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Proceedings of the 2nd Asian PGPR conference August 21–24, Beijing, P.R. China

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Rillig MC, Maestre FT, Lamit LJ (2003) Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 35:1257–1260

    CAS  Google Scholar 

  • Rini VM (2001) Effect of arbuscular mycorrhiza on oil palm seedling growth and development of basal stem rot disease caused by Ganoderma boninense. Master thesis, Universiti Putra Malaysia

    Google Scholar 

  • Rodriguez Romero AS, Jaizme-Vega MC (2005) Effect of the arbuscular mycorrhizal fungus Glomus manihotis on the root -knot nematode, Meloidogyne javanica, in banana. Nematol Medit 33:217–221

    Google Scholar 

  • Ryan MH, Small DR, Ash JE (2000) Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Aust J Exp Agric 40:663–670

    Google Scholar 

  • Sankaranarayanan C, Sundarababu R (1994) Interaction of Glomus fasciculatum with Meloidogyne incognita inoculated at different timings on blackgram (Vigna mungo). Nematol Medit 22:35–36

    Google Scholar 

  • Scheublin TR, Van Logtestijn RSP, Van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638

    CAS  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1069–1073

    Google Scholar 

  • Sharma AK, Srivastava R (2008) Effect of transgenic crops in rhizosphere microorganisms: an overview. In: Biosafety issues related to practicing agriculture biotechnology. Department of Molecular Biology and Genetic Engineering, GBPUAT, Pantnagar, Vikrant Offset, Haldwani, pp 75–84

    Google Scholar 

  • Shreenivasa R, Krishnappa K, Ravichandra NG (2007) Interaction effects of arbuscular mycorrhizal fungus Glomus fasciculatum and root-knot nematode, Meloidogyne incognita on growth and phosphorous uptake of tomato. Karnataka J Agric Sci 20:57–61

    Google Scholar 

  • Siddiqui ZA, Akhtar MS (2007) Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fertil Soils 43:603–609

    Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Srivastava K, Sharma S, Sharma AK (2014) Mycorrhizal inoculum production. In: Solaiman ZM, Abbott LK, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and forestry. Springer, Berlin, pp 67–79

    Google Scholar 

  • Smith SE, Read DJ (1997a) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (1997b) Vesicular-arbuscular mycorrhizas in agriculture and horticulture. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, pp 453–469

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Sui XL, Li AR, Chen Y, Guan KY, Zhuo L, Liu YY (2014) Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis. Mycorrhiza 24:187–195

    PubMed  Google Scholar 

  • Treeby MT (1992) The role of mycorrhizal fungi and non-mycorrhizal micro-organisms in iron nutrition of citrus. Soil Biol Biochem 24:857–864

    CAS  Google Scholar 

  • Trotta A, Vanese GC, Gnavi EM, Fascon A, Sampo S, Berta G (1996) Interaction between the soil borne root pathogen Phytophthora nicotianae Var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plant. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Van der Heijden MGA (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171

    PubMed  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Van der Heijden MGA, Rinaudo V, Verbruggen E, Scherrer C, Bàrberi P, Giovannetti M (2008) The significance of mycorrhizal fungi for crop productivity and ecosystem sustainability in organic farming systems. 16th IFOAM Organic World Congress, Modena, Italy, June 16–20

    Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    PubMed  Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562

    PubMed  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, de Waele D, Elsen A (2012a) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    CAS  Google Scholar 

  • Vos M, Tesfahun AN, Panis B, De Waele D, Elsen A (2012b) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 1227:1198–1227

    Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    PubMed  Google Scholar 

  • Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central great plains. Biol Fertil Soil 31:249–253

    CAS  Google Scholar 

  • Youssef MMA, El-Nagdi WMA (2015) Vesicular arbuscular mycorrhizae: a promising trend for biocontrolling plant parasitic nematodes. A review. Sci Agric 11:76–80

    CAS  Google Scholar 

  • Zadehbagheri M, Azarpanah A, Javanmardi S (2014a) Perspective of arbuscular mycorrhizal fungi phytoremediation on contamination and remediation heavy metals soil in sustainable agriculture. Am Eurasian J Agric Environ Sci 14:379–386

    Google Scholar 

  • Zadehbagheri M, Javanmardi S, Azarpanah A (2014b) Bioefficacy and characterization effect of arbuscular mycorrhizae fungi on defence response diseases and soil sickness in crop plants (review). Am Eurasian J Agric Environ Sci 14:363–378

    Google Scholar 

  • Zhu YG, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    CAS  PubMed  Google Scholar 

  • Zimmermann J, Musyoki MK, Cadisch G, Rasche F (2016) Biocontrol agent Fusarium oxysporum f. sp. strigae has no adverse effect on indigenous total fungal communities and specific AMF taxa in contrasting maize rhizospheres. Fungal Ecol 23:1–10

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiq Lone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, K.A., Manzoor, J., Shuab, R., Lone, R. (2017). Arbuscular Mycorrhizal Fungi as Biocontrol Agents for Parasitic Nematodes in Plants. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_10

Download citation

Publish with us

Policies and ethics