Skip to main content

Control of Mechatronic Systems

  • Chapter
  • First Online:
Intelligent Optimal Adaptive Control for Mechatronic Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 120))

Abstract

The following part of this work discusses selected control methods for nonlinear systems with the application of intelligent algorithms, with an indication of their significant advantages and drawbacks. The criteria for consideration in the accuracy of the tracking motion executed by nonlinear systems constitute a comparison of yielded results to the values obtained from tests, wherein the control system was based only on a PD controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adeli, H., Tabrizi, M.H.N., Mazloomian, A., Hajipour, E., Jahed, M.: Path planning for mobile robots using iterative artificial potential field method. IJCSI 8, 28–32 (2011)

    Google Scholar 

  2. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1979)

    Google Scholar 

  4. Balaji, P.G., German, X., Srinivasan, D.: Urban traffic signal control using reinforcement learning agents. IET Intell. Transp. Syst. 4, 177–188 (2010)

    Article  Google Scholar 

  5. Barto, A., Sutton, R., Anderson, C.: Neuronlike adaptive elements that can solve difficult learning problems. IEEE Trans. Syst. Man Cybern. Syst. 13, 834–846 (1983)

    Article  Google Scholar 

  6. Bhattacharya, P., Gavrilova, M.L.: Voronoi diagram in optimal path planning. In: Proceedings of 4th International Symposium on Voronoi Diagrams in Science and Engineering, Glamorgan, pp. 38–47 (2007)

    Google Scholar 

  7. Borenstain, J., Koren, J.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. Syst. 19, 1179–1186 (1989)

    Article  Google Scholar 

  8. Brock, O., Khatib, O.: Elastic strips: a framework for motion generation in human environments. Int. J. Robot. Res. 21, 1031–1052 (2002)

    Article  Google Scholar 

  9. Burghardt, A.: Behavioral control of a mobile mini robot (in Polish). Meas. Autom. Monit. 11, 26–29 (2004)

    Google Scholar 

  10. Burghardt, A.: Proposal for a rapid prototyping environment for algorithms intended for autonomous mobile robot control. Mech. Mech. Eng. 12, 5–16 (2008)

    Google Scholar 

  11. Burghardt, A.: Accomplishing tasks in reaching the goal of robot formation. Solid State Phenom. 220–221, 27–32 (2015)

    Article  Google Scholar 

  12. Burghardt, A., Hendzel, Z.: Adaptive neural network control of underactuated system, In: Proceedings of 4th International Conference on Neural Computation Theory and Applications, Barcelona, pp. 505–509 (2012)

    Google Scholar 

  13. Burghardt, A., Gierlak, P., Szuster, M.: Reinforcement learning in tracking control of 3DOF robotic manipulator. In: Awrejcewicz, J., Kamierczak, M., Olejnik, P., Mrozowski, J. (eds.) Dynamical Systems: Theory, pp. 163–174. WPL, Lodz (2013)

    Google Scholar 

  14. Burns, R.S.: Advanced Control Engineering. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  15. Canudas de Wit, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer, London (1996)

    Google Scholar 

  16. Chang, Y.-H., Chan, W.-S., Chang, C.-W., Tao, C.W.: Adaptive fuzzy dynamic surface control for ball and beam system. Int. J. Fuzzy Syst. 13, 1–13 (2011)

    MathSciNet  Google Scholar 

  17. Chang, Y.-H., Chang, C.-W., Tao, C.-W., Lin, H.-W., Taur, J.-S.: Fuzzy sliding-mode control for ball and beam system with fuzzy ant colony optimization. Expert Syst. Appl. 39, 3624–3633 (2012)

    Article  Google Scholar 

  18. Doya, K.: Reinforcement learning in continuous time and space. Neural Comput. 12, 219–245 (2000)

    Article  Google Scholar 

  19. Drainkov, D., Saffiotti, A.: Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Springer, New York (2001)

    Book  Google Scholar 

  20. Emhemed, A.A.: Fuzzy control for nonlinear ball and beam system. Int. J. Fuzzy Log. Intell. Syst. 3, 25–32 (2013)

    Article  Google Scholar 

  21. Ernst, D., Glavic, M., Wehenkel, L.: Power systems stability control: reinforcement learning framework. IEEE Trans. Power Syst. 19, 427–435 (2004)

    Article  Google Scholar 

  22. Fabri, S., Kadirkamanathan, V.: Dynamic structure neural networks for stable adaptive control of nonlinear systems. IEEE Trans. Neural Netw. 12, 1151–1167 (1996)

    Article  Google Scholar 

  23. Fahimi, F.: Autonomous Robots. Modeling, Path Planning, and Control. Springer, New York (2009)

    Google Scholar 

  24. Fairbank, M., Alonso, E., Prokhorov, D.: Simple and fast calculation of the second-order gradients for globalized dual heuristic dynamic programming in neural networks. IEEE Trans. Neural Netw. Learn. Syst. 23, 1671–1676 (2012)

    Article  Google Scholar 

  25. Ferrari, S., Stengel, R.F.: An adaptive critic global controller. In: Proceedings of American Control Conference, vol. 4, pp. 2665–2670. Anchorage, Alaska (2002)

    Google Scholar 

  26. Ferrari, S., Stengel, R.F.: Model-based adaptive critic designs in learning and approximate dynamic programming. In: Si, J., Barto, A., Powell, W., Wunsch, D.J. (eds.) Handbook of Learning and Approximate Dynamic Programming, pp. 64–94. Wiley, New York (2004)

    Google Scholar 

  27. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9, 589–600 (1998)

    Article  Google Scholar 

  28. Garrido, S., Moreno, L., Abderrahim M., Martin, F.: Path planning for mobile robot navigation using Voronoi diagram and fast marching. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2376–2381 (2006)

    Google Scholar 

  29. Giergiel, J., Hendzel, Z., Zylski, W.: Kinematics, Dynamics and Control of Wheeled Mobile Robots in Mechatronic Aspect (in Polish). Faculty IMiR AGH, Krakow (2000)

    Google Scholar 

  30. Giergiel, J., Hendzel, Z., Zylski, W.: Modeling and Control of Wheeled Mobile Robots (in Polish). Scientific Publishing PWN, Warsaw (2002)

    Google Scholar 

  31. Gierlak, P., Szuster, M., Zylski, W.: Discrete dual-heuristic programming in 3DOF manipulator control. Lect. Notes Artif. Int. 6114, 256–263 (2010)

    Google Scholar 

  32. Gierlak, P., Muszyska, M., Zylski, W.: Neuro-fuzzy control of robotic manipulator. Int. J. Appl. Mech. Eng. 19, 575–584 (2014)

    Article  Google Scholar 

  33. Glower, J.S., Munighan, J.: Designing fuzzy controllers from a variable structures standpoint. IEEE Trans. Fuzzy Syst. 5, 138–144 (1997)

    Article  Google Scholar 

  34. Godjevac, J., Steele, N.: Neuro-fuzzy control of a mobile robot. Neurocomputing 28, 127–143 (1999)

    Article  Google Scholar 

  35. Han, D., Balakrishnan, S.: Adaptive critic based neural networks for control-constrained agile missile control. Proc. Am. Control Conf. 4, 2600–2605 (1999)

    Google Scholar 

  36. Hendzel, Z.: Tracking Control of Wheeled Mobile Robots (in Polisch). OWPRz, Rzeszw (1996)

    Google Scholar 

  37. Hendzel, Z.: Fuzzy reactive control of wheeled mobile robot. JTAM 42, 503–517 (2004)

    MATH  Google Scholar 

  38. Hendzel, Z., Burghardt, A.: Behavioral fuzzy control of basic motion of a mobile robot (in Polish). Meas. Autom. Monit. 11, 23–25 (2004)

    Google Scholar 

  39. Hendzel, Z., Burghardt, A.: Behaviouralc Control of Wheeled Mobile Robots (in Polish). Rzeszow University of Technology Publishing House, Rzeszw (2007)

    Google Scholar 

  40. Hendzel, Z., Szuster, M.: A dynamic structure neural network for motion control of a wheeled mobile robot. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J. (eds.) Computational Intelligence: Methods and Applications, pp. 365–376. EXIT, Warszawa (2008)

    Google Scholar 

  41. Hendzel, Z., Szuster, M.: Discrete model-based dual heuristic programming in wheeled mobile robot control. In: Awrejcewicz, J., Kamierczak, M., Olejnik, P., Mrozowski, J. (eds.) Dynamical Systems - Theory and Applications, pp. 745–752. Left Grupa, Lodz (2009)

    Google Scholar 

  42. Hendzel, Z., Szuster, M.: Heuristic dynamic programming in wheeled mobile robot control. In: Kaszyski, R., Pietrusewicz, K. (eds.) Methods and Models in Automation and Robotics, pp. 513–518. IFAC, Poland (2009)

    Google Scholar 

  43. Hendzel, Z., Szuster, M.: Discrete action dependant heuristic dynamic programming in wheeled mobile robot control. Solid State Phenom. 164, 419–424 (2010)

    Article  MATH  Google Scholar 

  44. Hendzel, Z., Szuster, M.: Discrete model-based adaptive critic designs in wheeled mobile robot control. Lect. Notes Artif. Int. 6114, 264–271 (2010)

    Google Scholar 

  45. Hendzel, Z., Szuster, M.: Adaptive critic designs in behavioural control of a wheeled mobile robot. In: Awrejcewicz, J., Kamierczak, M., Olejnik, P., Mrozowski J. (eds.) Dynamical Systems, Nonlinear Dynamics and Control, pp. 133–138, WPL, £odz (2011)

    Google Scholar 

  46. Hendzel, Z., Szuster, M.: Discrete neural dynamic programming in wheeled mobile robot control. Commun. Nonlinear Sci. Numer. Simulat. 16, 2355–2362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hendzel, Z., Szuster, M.: Neural dynamic programming in behavioural control of WMR (in Polish). Acta Mech. Autom. 5, 28–36 (2011)

    MATH  Google Scholar 

  48. Hendzel, Z., Szuster, M.: Neural dynamic programming in reactive navigation of wheeled mobile robot. Lect. Notes Comput. Sc. 7268, 450–457 (2012)

    Article  MATH  Google Scholar 

  49. Hendzel, Z., Szuster, M.: Approximate dynamic programming in sensor-based navigation of wheeled mobile robot. Solid State Phenom. 220–221, 60–66 (2015)

    Article  Google Scholar 

  50. Hendzel, Z., Trojnacki, M.: Neural Network Control of Mobile Wheeled Robots (in Polish). Rzeszow University of Technology Publishing House, Rzeszow (2008)

    Google Scholar 

  51. Hendzel, Z., Burghardt, A., Szuster, M.: Artificial intelligence methods in reactive navigation of mobile robots formation. In: Proceedings of 4th International Conference on Neural Computation Theory and Applications, Barcelona, pp. 466–473 (2012)

    Google Scholar 

  52. Hendzel, Z., Burghardt, A., Szuster, M.: Adaptive critic designs in control of robots formation in unknown environment. Lect. Notes Artif. Int. 7895, 351–362 (2013)

    Google Scholar 

  53. Hendzel, Z., Burghardt, A., Szuster, M.: Reinforcement learning in discrete neural control of the underactuated system. Lect. Notes Artif. Int. 7894, 64–75 (2013)

    Google Scholar 

  54. Hendzel, Z., Burghardt, A., Szuster, M.: Artificial intelligence algorithms in behavioural control of wheeled mobile robots formation. SCI 577, 263–277 (2015)

    MATH  Google Scholar 

  55. Huan, H.P., Chung, S.Y.: Dynamic visibility graph for path planning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, vol. 3, pp. 2813–2818 (2004)

    Google Scholar 

  56. Jamshidi, M., Zilouchian, A.: Intelligent Control Systems Using Soft Computing Methodologies. CRC Press, London (2001)

    Google Scholar 

  57. Janet, J.A., Luo, R.C., Kay, M.G.: The essential visibility graph: an approach to global motion planning for autonomous mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, vol. 2, pp. 1958–1963 (1995)

    Google Scholar 

  58. Kecman, V.: Learning and Soft Computing. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  59. Keshmiri, M., Jahromi, A.F., Mohebbi, A., Amoozgar, M.H., Xie, W.F: Modeling and control of ball and beam system using model based and non-model based control approaches. Int. J. Smart Sens. Intell. Syst. 5, 14–35 (2012)

    Google Scholar 

  60. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Proc. IEEE Int. Conf. Robot. Autom. 2, 500–505 (1985)

    Google Scholar 

  61. Kim, Y.H., Lewis, F.L.: A dynamical recurrent neural-network-based adaptive observer for a class of nonlinear systems. Automatica 33, 1539–1543 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  62. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. Proc. IEEE Int. Conf. Robot. Autom. 2, 1398–1404 (1991)

    Google Scholar 

  63. Koshkouei, A.J., Zinober, A.S.: Sliding mode control of discrete-time systems. J. Dyn. Syst. Meas. Control. 122, 793–802 (2000)

    Article  Google Scholar 

  64. Kozowski, K., Dutkiewicz, P., Wrblewski, W.: Modeling and Control of Robots (in Polish). Scientific Publishing PWN, Warsaw (2003)

    Google Scholar 

  65. Lee, G.H., Jung, S.: Line tracking control of a two-wheeled mobile robot using visual feedback. Int. J. Adv. Robot. Syst. 10, 1–8 (2013)

    Article  Google Scholar 

  66. Lendaris, G., Schultz, L., Shannon, T.: Adaptive critic design for intelligent steering and speed control of a 2-axle vehicle. Proc. IEEE INNS-ENNS Int. Jt. Conf. Neural Netw. 3, 73–78 (2000)

    Article  Google Scholar 

  67. Lewis, F.L., Campos, J., Selmic, R.: Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  68. Levis, F.L., Liu, K., Yesildirek, A.: Neural net robot controller with guaranted tracking performance. IEEE Trans. Neural Netw. 6, 703–715 (1995)

    Article  Google Scholar 

  69. Liu, G.P.: Nonlinear Identification and Control. Springer, London (2001)

    Book  Google Scholar 

  70. Liu, D., Wang, D., Yang, X.: An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs. Inform. Sci. 220, 331–342 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Maaref, H., Barret, C.: Sensor-based navigation of a mobile robot in an indoor environment. Robot. Auton. Syst. 38, 1–18 (2002)

    Article  MATH  Google Scholar 

  72. Millán, J., del, R.: Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an autonomous mobile robot. Robot. Auton. Syst. 15, 275–299 (1995)

    Google Scholar 

  73. Miller, W.T., Sutton, R.S., Werbos, P.J.: Neural Networks for Control. A Bradford Book, MIT Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  74. Mohagheghi, S., Venayagamoorthy, G.K., Harley, R.G.: Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power system. IEEE Trans. Power Syst. 21, 1744–1754 (2006)

    Article  Google Scholar 

  75. Muskinja, N., Riznar, M.: Optimized PID position control of a nonlinear system based on correlating the velocity with position error. Math. Probl. Eng. 2015, 1–11 (2015)

    Article  Google Scholar 

  76. Ng, K.C., Trivedi, M.T.: A neuro-fuzzy controller for mobile robot navigation and multirobot convoying. IEEE Trans. Syst. Man Cybern. B Cybern. 28, 829–840 (1998)

    Article  Google Scholar 

  77. Prokhorov, D., Wunch, D.: Adaptive critic designs. IEEE Trans. Neural Netw. 8, 997–1007 (1997)

    Article  Google Scholar 

  78. Samarjit, K., Sujit, D., Ghosh, P.K.: Applications of neuro fuzzy systems: a brief review and future online. Appl. Soft Comput. 15, 243–259 (2014)

    Article  Google Scholar 

  79. Si, J., Barto, A.G., Powell, W.B., Wunsch, D.: Handbook of Learning and Approximate Dynamic Programming. IEEE Press, Wiley-Interscience, Hoboken (2004)

    Book  Google Scholar 

  80. Sira-Ramirez, H.: Differential geometric methods in variable-structure control. Int. J. Control 48, 1359–1390 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  81. Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)

    MATH  Google Scholar 

  82. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control (in Polish). WNT, Warsaw (1997)

    Google Scholar 

  83. Spooner, J.T., Passio, K.M.: Stable adaptive control using fuzzy systems and neural networks. IEEE Trans. Fuzzy Syst. 4, 339–359 (1996)

    Article  Google Scholar 

  84. Syam, R., Watanabe, K., Izumi, K.: Adaptive actor-critic learning for the control of mobile robots by applying predictive models. Soft. Comput. 9, 835–845 (2005)

    Article  MATH  Google Scholar 

  85. Szuster, M.: Globalised dual heuristic dynamic programming in tracking control of the wheeled mobile robot. Lect. Notes Artif. Int. 8468, 290–301 (2014)

    Google Scholar 

  86. Szuster, M., Gierlak, P.: Approximate dynamic programming in tracking control of a robotic manipulator. Int. J. Adv. Robot. Syst. 13, 1–18 (2016)

    Article  Google Scholar 

  87. Szuster, M., Gierlak, P.: Globalised dual heuristic dynamic programming in control of robotic manipulator. AMM 817, 150–161 (2016)

    Article  Google Scholar 

  88. Szuster, M., Hendzel, Z.: Discrete globalised dual heuristic dynamic programming in control of the two-wheeled mobile robot. Math. Probl. Eng. 2014, 1–16 (2014)

    Article  Google Scholar 

  89. Szuster, M., Hendzel, Z., Burghardt, A.: Fuzzy sensor-based navigation with neural tracking control of the wheeled mobile robot. Lect. Notes Artif. Int. 8468, 302–313 (2014)

    MATH  Google Scholar 

  90. Tadeusiewicz, R.: Neural Networks (in Polish). AOWRM, Warsaw (1993)

    Google Scholar 

  91. Tcho, K., Mazur, A., Dulba, I., Hossa, R., Muszyski, R.: Mobile Manipulators and Robots (in Polish). Academic Publishing Company PLJ, Warsaw (2000)

    Google Scholar 

  92. Wang, L.: A Course in Fuzzy Systems and Control. Prentice-Hall, New York (1997)

    MATH  Google Scholar 

  93. Yu, W.: Nonlinear PD regulation for ball and beam system. Int. J. Elec. Eng. Educ. 46, 59–73 (2009)

    Article  Google Scholar 

  94. Zylski, W., Gierlak, P.: Verification of multilayer neuralnet controller in manipulator tracking control. Solid State Phenom. 164, 99–104 (2010)

    Article  Google Scholar 

  95. Zylski, W., Gierlak, P.: Tracking Control of Robotic Manipulator (in Polish). Rzeszow University of Technology Publishing House, Rzeszow (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Szuster .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szuster, M., Hendzel, Z. (2018). Control of Mechatronic Systems. In: Intelligent Optimal Adaptive Control for Mechatronic Systems. Studies in Systems, Decision and Control, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-319-68826-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68826-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68824-4

  • Online ISBN: 978-3-319-68826-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics