Skip to main content

Plant Respiration Responses to Elevated CO2: An Overview from Cellular Processes to Global Impacts

  • Chapter
  • First Online:
Plant Respiration: Metabolic Fluxes and Carbon Balance

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 43))

Summary

Earth is currently going through a period of unprecedented, exponential change. As a result, the world’s flora are experiencing novel environmental conditions. One of the most steady, ongoing global changes is the rise in atmospheric carbon dioxide (CO2). Atmospheric CO2 levels are the highest they’ve been in 650,000 years and are continuing to increase. The rate at which land plants take up and release CO2 through photosynthesis and respiration, respectively, will significantly influence the trajectory of atmospheric CO2 change in the future. This chapter explores the physiological mechanisms underlying the response of plant CO2 release (i.e., respiration) to changing atmospheric CO2 concentrations. Both short- (seconds to minutes) and long- (weeks to years) term responses are discussed. Over relatively short timescales, CO2 can alter respiratory physiology, but counterbalancing responses may result in no change in gross respiration. Longer-term responses of respiration to CO2 are likely to be determined by changes in the supply of respiratory substrates and demand for respiratory products. Additionally, the interaction between respiration responses to CO2 and other global change factors, such as temperature, precipitation, and nitrogen, are considered. In many cases, results from experiments examining these interactions indicate weaker responses than theory might suggest. Finally, the representation of plant respiration in the large-scale models used to project climate change is examined. This section highlights the simplicity of current model representations, which do not explicitly include direct responses of plant respiration to elevated CO2 . Recommendations for model improvement are suggested. It is essential that plant physiologists and modelers work together to improve the representation of these processes in large-scale models in order to increase confidence and reduce uncertainty in projections of future biosphere-atmosphere CO2 feedbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abadie C, Boex-Fontvieille ERA, Carroll AJ, Tcherkez G (2016) In vivo stoichiometry of photorespiratory metabolism. Nat Plants 2:15220

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol 142:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander K, Easterbrook SM (2015) The software architecture of climate models, a graphical comparison of CMIP5 and EMICAR5 configurations. Geosci Model Dev 8:1221–1232

    Article  Google Scholar 

  • Amthor JS (1984) The role of maintenance respiration in plant growth. Plant Cell Environ 7:561–569

    Google Scholar 

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob Chang Biol 1:243–274

    Article  Google Scholar 

  • Amthor JS (2000) The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Ann Bot-London 86:1–20

    Article  CAS  Google Scholar 

  • Aranjuelo I, Erice G, Sanz-Sáez A, Abadie C, Gilard F, Gil-Quintana E et al (2015) Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.) Plant Cell Environ 38:2780–2794

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) The hot and the cold, unravelling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    Article  Google Scholar 

  • Atkin OK, Atkinson LJ, Fisher RA, Campbell CD, Zaragoza-Castells J, Pitchford JW, Woodward FI, Hurry V (2008) Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model. Glob Chang Biol 14:2709–2726

    Google Scholar 

  • Atkin OK, Meir P, Turnbull MH (2014) Improving representation of leaf respiration in large-scale predictive climate–vegetation models. New Phytol 202:743–748

    Article  PubMed  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636

    Article  CAS  PubMed  Google Scholar 

  • Ayub G, Smith RA, Tissue DT, Atkin OK (2011) Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytol 190:1003–1018

    Article  PubMed  Google Scholar 

  • Ayub G, Zaragoza-Castells J, Griffin KL, Atkin OK (2014) Leaf respiration in darkness and in the light under pre-industrial, current and elevated atmospheric CO2 concentrations. Plant Sci 226:120–130

    Article  CAS  PubMed  Google Scholar 

  • Azcón-Bieto J, Osmond CB (1983) Relationship between photosynthesis and respiration. The effect of carbohydrate status on the rate of CO2 production by respiration in darkened and illuminated wheat leaves. Plant Physiol 71:574–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Azcon-Bieto J, Gonzalez-Meler MA, Doherty W, Drake BG (1994) Acclimation of respiratory O2 uptake in green tissues of field-grown native species after long-term exposure to elevated atmospheric CO2. Plant Physiol 106:1163–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beevers H (1974) Conceptual developments in metabolic control: 1924–1974. Plant Physiol 54:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingham IJ, Farrar JF (1988) Regulation of respiration in roots of barley. Physiol Plant 73:278–285

    Article  CAS  Google Scholar 

  • Bouma T, Visser RD, Janssen J, Md K, Pv L, Lambers H (1994) Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol Plant 92:585–594

    Article  CAS  Google Scholar 

  • Breeze V, Elston J (1978) Some effects of temperature and substrate content upon respiration and the carbon balance of field beans (Vicia faba L.) Ann Bot-London 42:863–876

    Article  CAS  Google Scholar 

  • Bunce JA (2005) Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions. Ann Bot-London 95:1059–1066

    Article  Google Scholar 

  • Cheesman AW, Winter K (2013) Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings. J Exp Bot 64:3817–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. In: Jennings DH (ed) Integration of activity in the higher plant. University Press, Cambridge, pp 471–505

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  • Crous KY, Reich PB, Hunter MD, Ellsworth DS (2010) Maintenance of leaf N controls the photosynthetic CO2 response of grassland species exposed to 9 years of free-air CO2 enrichment. Glob Chang Biol 16:2076–2088

    Article  Google Scholar 

  • Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system, a fascinating complex. Trends Plant Sci 6:167–176

    Article  CAS  PubMed  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants, a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639

    Article  CAS  Google Scholar 

  • Drake BG, Azcon-Bieto J, Berry J, Bunce J, Dijkstra P, Farrar J et al (1999) Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ 22:649–657

    Article  CAS  Google Scholar 

  • Duan H, Amthor JS, Duursma RA, O’Grady AP, Choat B, Tissue DT (2013) Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Tree Physiol 33:779–792

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob Chang Biol 10:2121–2138

    Article  Google Scholar 

  • Farquhar G, von Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Farrar JF, Williams ML (1991) The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ 14:819–830

    Article  CAS  Google Scholar 

  • Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbo M (2006) Keeping a positive carbon balance under adverse conditions, responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352

    Article  CAS  Google Scholar 

  • Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2013) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–526

    Article  Google Scholar 

  • Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci U S A 102:11201–11206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galmes J, Ribas-Carbo M, Medrano H, Flexas J (2007) Response of leaf respiration to water stress in Mediterranean species with different growth forms. J Arid Environ 68:206–222

    Article  Google Scholar 

  • Gauthier PPG, Crous KY, Ayub G, Duan H, Weerasinghe LK, Ellsworth DS et al (2014) Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. J Exp Bot 65:6471–6485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford RM (1995) Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature, Long-term vs short-term distinctions for modeling. Glob Chang Biol 1:385–396

    Article  Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models, conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171–186

    Article  Google Scholar 

  • Gimeno TE, Sommerville KE, Valladares F, Atkin OK (2010) Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate, insights from two contrasting Acacia species. Funct Plant Biol 37:323–333

    Article  Google Scholar 

  • Gonzàlez-Meler MA, Siedow JN (1999) Direct inhibition of mitochondrial respiratory enzymes by elevated CO2, does it matter at the tissue or whole-plant level? Tree Physiol 19:253–259

    Article  PubMed  Google Scholar 

  • Gonzalez-Meler MA, Miquel R-C, Siedow JN, Drake BG (1996) Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiol 112:1349–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzàlez-Meler M, Giles L, Thomas R, Siedow J (2001) Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supply. Plant Cell Environ 24:205–215

    Article  Google Scholar 

  • Gonzalez-Meler MA, Taneva L, Trueman RJ (2004) Plant respiration and elevated atmospheric CO2 concentration, cellular responses and global significance. Ann Bot-London 94:647–656

    Article  CAS  Google Scholar 

  • Griffin KL, Heskel M (2013) Breaking the cycle, how light, CO2 and O2 affect plant respiration. Plant Cell Environ 36:498–500

    Article  CAS  PubMed  Google Scholar 

  • Griffin KL, Turnbull MH (2013) Light saturated RuBP oxygenation by Rubisco is a robust predictor of light inhibition of respiration in Triticum aestivum L. Plant Biol 15:769–775

    Article  CAS  PubMed  Google Scholar 

  • Griffin KL, Anderson OR, Gastrich MD, Lewis JD, Lin G, Schuster W et al (2001) Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci U S A 98:2473–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JG, Thomas RB, Delucia EH (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982

    Article  CAS  Google Scholar 

  • Hartley IP, Armstrong AF, Murthy R, Barron-Gafford G, Ineson P, Atkin OK (2006) The dependence of respiration on photosynthetic substrate supply and temperature, integrating leaf, soil and ecosystem measurements. Glob Chang Biol 12:1954–1968

    Article  Google Scholar 

  • Hendrey GR, Miglietta F (2006) FACE technology, past, present, and future. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2. Case studies, processes, and perspectives. Springer, Berlin/Heidleberg, pp 15–43

    Google Scholar 

  • Heskel MA, O’Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A et al (2016) Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc Natl Acad Sci U S A 113:3832–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. BB -Bioenergetics 1366:235–255

    Article  CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013, the physical science basis. Contribution of working group I to the fifth assessment resport of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Jahnke S (2001) Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24:1139–1151

    Article  CAS  Google Scholar 

  • Jahnke S, Krewitt M (2002) Atmospheric CO2 concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ 25:641–651

    Article  CAS  Google Scholar 

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327

    Article  CAS  PubMed  Google Scholar 

  • King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312:536–537

    Article  CAS  PubMed  Google Scholar 

  • Körner C, Pelaez-Riedl S, van Bel A (1995) CO2 responsiveness of plants, a possible link to phloem loading. Plant Cell Environ 18:595–600

    Article  Google Scholar 

  • Kroner Y, Way DA (2016) Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. Glob Chang Biol 22:2913–2928

    Article  PubMed  Google Scholar 

  • Lambers H, Szaniawski RK, Visser R (1983) Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values and their significance. Physiol Plant 58:556–563

    Article  CAS  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009a) Elevated CO2 effects on plant carbon, nitrogen, and water relations, six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB, Xu F, Gillespie KM, McGrath JM, Ainsworth EA, Ort DR (2009b) Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc Natl Acad Sci U S A 106:3597–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TD, Tjoelker MG, Ellsworth DS, Reich PB (2001) Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytol 150:405–418

    Article  CAS  Google Scholar 

  • Lee TD, Barrott SH, Reich PB (2011) Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Glob Chang Biol 17:2893–2904

    Article  Google Scholar 

  • Lehmeier CA, Wild M, Schnyder H (2013) Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass. Plant Physiol 162:2095–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuzinger S, Thomas QR (2011) How do we improve Earth system models? Integrating Earth system models, ecosystem models, experiments and long-term data. New Phytol 191:15–18

    Article  PubMed  Google Scholar 

  • Leuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Körner C (2011) Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–241

    Article  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide, plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Meinshausen M, Smith S, Calvin K, Daniel J, Kainuma M, Lamarque JF et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  CAS  Google Scholar 

  • Morgan JA, Pataki DE, Körner C, Clark H, Grosso SJ, Grünzweig JM et al (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y et al (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205

    Article  CAS  PubMed  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A 107:19368–19373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinn RG (2013) Development and application of earth system models. Proc Natl Acad Sci U S A 110:3673–3680

    Article  CAS  PubMed  Google Scholar 

  • Raddatz T, Reick C, Knorr W, Kattge J, Roeckner E, Schnur R et al (2007) Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Clim Dynam 29:565–574

    Article  Google Scholar 

  • Reich PB, Hungate BA, Luo YQ (2006) Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Syst 37:611–636

    Article  Google Scholar 

  • Ribas-Carbo M, Berry JA, Yakir D, Giles L, Robinson SA, Lennon AM, Siedow JN (1995) Electron partitioning between the cytochrome and alternative pathways in plant mitochondria. Plant Physiol 109:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1:157–167

    Article  PubMed  Google Scholar 

  • Shapiro JB, Griffin KL, Lewis JD, Tissue DT (2004) Response of Xanthium strumarium leaf respiration in the light to elevated CO2 concentration, nitrogen availability and temperature. New Phytol 162:377–386

    Article  CAS  Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B et al (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Slot M, Kitajima K (2014) General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177:885–900

    Article  PubMed  Google Scholar 

  • Slot M, Zaragoza-Castells J, Atkin OK (2008) Transient shade and drought have divergent impacts on the temperature sensitivity of dark respiration in leaves of Geum urbanum. Funct Plant Biol 35:1135–1146

    Article  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models, incorporating acclimation to temperature and CO2. Glob Chang Biol 19:45–63

    Article  PubMed  Google Scholar 

  • Tcherkez G, Cornic G, Bligny R, Gout E, Ghashghaie J (2005) In Vivo respiratory metabolism of illuminated leaves. Plant Physiol 138:1596–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Mahé A, Gauthier P, Mauve C, Gout E, Bligny R, Cornic G, Hodges M (2009) In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid cycle in illuminated leaves. Plant Physiol 151:620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Mahé A, GuéRard F, Boex-Fontvieille ERA, Gout E, Lamothe M, Barbour MM, Bligny R (2012) Short-term effects of CO2 and O2 on citrate metabolism in illuminated leaves. Plant Cell Environ 35:2208–2220

    Article  CAS  PubMed  Google Scholar 

  • Tissue DT, Lewis JD, Wullschleger SD, Amthor JS, Griffin KL, Anderson OR (2002) Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tree Physiol 22:1157–1166

    Article  PubMed  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (1999a) Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Glob Chang Biol 5:679–691

    Article  Google Scholar 

  • Tjoelker MG, Reich PB, Oleksyn J (1999b) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ 22:767–778

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (2001) Modeling respiration of vegetation, evidence for a general temperature-dependent Q(10). Glob Chang Biol 7:223–230

    Article  Google Scholar 

  • Van Oijen M, Schapendonk A, Hoglind M (2010) On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation. Ann Bot-London 105:793–797

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K et al (2011) The representative concentration pathways, an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • Wang X, Lewis JD, Tissue DT, Seemann JR, Griffin KL (2001) Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness. Proc Natl Acad Sci U S A 98:2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Anderson OR, Griffin KL (2004) Chloroplast numbers, mitochondrion numbers and carbon assimilation physiology of Nicotiana sylvestris as affected by CO2 concentration. Environ Exp Bot 51:21–31

    Article  CAS  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis, on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    Article  CAS  PubMed  Google Scholar 

  • Williams JHH, Farrar JF (1990) Control of barley root respiration. Physiol Plant 79:259–266

    Article  CAS  Google Scholar 

  • Wright SJ, Muller-Landau HC, Schipper JAN (2009) The future of tropical species on a warmer planet. Conserv Biol 23:1418–1426

    Article  PubMed  Google Scholar 

  • Xu Z, Zheng X, Wang Y, Wang Y, Huang Y, Zhu J (2006) Effect of free-air atmospheric CO2 enrichment on dark respiration of rice plants (Oryza sativa L.) Agric Ecosyst Environ 115:105–112

    Article  Google Scholar 

  • Zha T, Ryyppö A, Wang K-Y, Kellomäki S (2001) Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period. Tree Physiol 21:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Ziehn T, Kattge J, Knorr W, Scholze M (2011) Improving the predictability of global CO2 assimilation rates under climate change. Geophys Res Lett 38:L10404

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Agriculture – National Institute of Food and Agriculture (2015-67003-23485), the United States National Aeronautics and Space Administration (NNX13AN65H), and the Purdue Climate Change Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas G. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, N.G. (2017). Plant Respiration Responses to Elevated CO2: An Overview from Cellular Processes to Global Impacts. In: Tcherkez, G., Ghashghaie, J. (eds) Plant Respiration: Metabolic Fluxes and Carbon Balance. Advances in Photosynthesis and Respiration, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-68703-2_4

Download citation

Publish with us

Policies and ethics