Skip to main content

Causality–Complexity–Consistency: Can Space-Time Be Based on Logic and Computation?

  • Chapter
  • First Online:
Time in Physics

Abstract

The difficulty of explaining non-local correlations in a fixed causal structure sheds new light on the old debate on whether space and time are to be seen as fundamental. Refraining from assuming space-time as given a priori has a number of consequences. First, the usual definitions of randomness depend on a causal structure and turn meaningless. So motivated, we propose an intrinsic, physically motivated measure for the randomness of a string of bits: its length minus its normalized work value, a quantity we closely relate to its Kolmogorov complexity (the length of the shortest program making a universal Turing machine output this string). We test this alternative concept of randomness for the example of non-local correlations, and we end up with a reasoning that leads to similar conclusions as in, but is conceptually more direct than, the probabilistic view since only the outcomes of measurements that can actually all be carried out together are put into relation to each other. In the same context-free spirit, we connect the logical reversibility of an evolution to the second law of thermodynamics and the arrow of time. Refining this, we end up with a speculation on the emergence of a space-time structure on bit strings in terms of data-compressibility relations. Finally, we show that logical consistency, by which we replace the abandoned causality, it strictly weaker a constraint than the latter in the multi-party case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This change of perspective reflects the debate, three centuries ago, between Newton and Leibniz on the nature of space and time, in particular on as how fundamental this causal structure is to be considered.

  2. 2.

    In this context and as a reply to [25], we feel that the notion of a choice between different possible futures by an act of free will put forward there is not only hard to formalize but also not much more innocent than Everettian relative states [21]—after all, the latter are real (within their respective branches of the wave function). We have become familiar with the ease of handling probabilities and cease to realize how delicate they are ontologically.

  3. 3.

    It has been argued that quantum theory violates the causal law due to random outcomes of measurements. Hermann [27] argued that the law of causality does not require the past to determine the future, but vice versa. This is in accordance with our view of logical reversibility: There can be information growth, but there can be no information loss.

  4. 4.

    The introduced asymptotic notions are independent of this choice.

  5. 5.

    This is inspired by Cilibrasi and Vitányi [16], where (joint) Kolmogorov complexity—or, in practice, any efficient compression method—is used to define a distance measure on sets of bit strings (such as literary texts of genetic information of living beings). The resulting structure in that case is a distance measure, and ultimately a clustering as a binary tree.

  6. 6.

    The Church-Turing thesis, first formulated by Kleene [28], states that any physically possible process can be simulated by a universal Turing machine.

  7. 7.

    Note that this is the natural way of defining logical reversibility in our setting with a fixed input and output but no sets nor bijective maps between them.

  8. 8.

    A diagonal argument, called Berry paradox, shows that the notion of “description complexity” cannot be defined generally for all strings.

  9. 9.

    Here, h is the binary entropy h(x) = −plogp − (1 − p)log(1 − p). Usually, p is a probability, but h is invoked here merely as an approximation for binomial coefficients.

  10. 10.

    In this section, conditional complexities are understood as follows: In K(x | y), for instance, the condition y is assumed to be the full (infinite) string, whereas the asymptotic process runs over x [n]. The reason is that very insignificant bits of y (intuitively: the present) can be in relation to bits of x (the past) of much higher significance. The past does not disappear, but it fades.

  11. 11.

    Transitivity arises from the assumption of a fixed causal structure within a party, where the input is causally prior to the output.

References

  1. S. Aaronson, http://www.scottaaronson.com/blog/?p=762,2012.

  2. P.K. Aravind, Bell’s theorem without inequalities and only two distant observers. Found. Phys. Lett. 15(4), 397–405 (2002)

    Article  MathSciNet  Google Scholar 

  3. J.-D. Bancal, S. Pironio, A. Acín, Y.-C. Liang, V. Scarani, N. Gisin, Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867–870 (2012)

    Article  Google Scholar 

  4. T.J. Barnea, J.-D. Bancal, Y.-C. Liang, N. Gisin, Tripartite quantum state violating the hidden influence constraints. Phys. Rev. A 88, 022123 (2013)

    Article  ADS  Google Scholar 

  5. J. Barrett, L. Hardy, A. Kent, No-signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  6. Ä. Baumeler, S. Wolf, Perfect signaling among three parties violating predefined causal order, in Proceedings of IEEE International Symposium on Information Theory 2014 (IEEE, Piscataway, 2014), pp. 526–530

    Google Scholar 

  7. Ä. Baumeler, S. Wolf, The space of logically consistent classical processes without causal order. New J. Phys. 18, 013036 (2016)

    Article  ADS  Google Scholar 

  8. Ä. Baumeler, S. Wolf, Non-causal computation avoiding the grandfather and information antinomies. arXiv preprint, arXiv:1601.06522 [quant-ph], 2016; accepted for publication in New J. Phys. (2016)

    Google Scholar 

  9. Ä. Baumeler, A. Feix, S. Wolf, Maximal incompatibility of locally classical behavior and global causal order in multi-party scenarios. Phys. Rev. A 90, 042106 (2014)

    Article  ADS  Google Scholar 

  10. Ä. Baumeler, F. Costa, T.C. Ralph, S. Wolf, M. Zych, Reversible time travel with freedom of choice. Preprint (2017). arXiv:1703.00779 [quant-ph]

    Google Scholar 

  11. J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  12. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. C.H. Bennett, The thermodynamics of computation. Int. J. Theor. Phys. 21(12), 905–940 (1982)

    Article  Google Scholar 

  14. G. Brassard, A. Broadbent, A. Tapp, Quantum pseudo-telepathy. arXiv preprint, arXiv:quant-ph/0407221 (2004)

    Google Scholar 

  15. G. Chaitin, A theory of program size formally identical to information theory. J. ACM 22, 329–340 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Cilibrasi, P. Vitányi, Clustering by compression. IEEE Trans. Inf. Theory 51(4), 523–1545 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Colbeck, R. Renner, No extension of quantum theory can have improved predictive power. Nat. Commun. 2 411 (2011)

    Article  ADS  Google Scholar 

  18. R. Colbeck, R. Renner, Free randomness can be amplified. Nat. Phys. 8, 450–454 (2012)

    Article  Google Scholar 

  19. S. Coretti, E. Hänggi, S. Wolf, Nonlocality is transitive. Phys. Rev. Lett. 107, 100402 (2011)

    Article  ADS  Google Scholar 

  20. O. Dahlsten, R. Renner, E. Rieper, V. Vedral, The work value of information. New J. Phys. 13, 053015 (2011)

    Article  ADS  Google Scholar 

  21. H. Everett, “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Fine, Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Gàcs, J.T. Tromp, P.M.B. Vitányi, Algorithmic statistics. IEEE Trans. Inf. Theory 47(6), 2443–2463 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Gisin, Time really passes, science can’t deny that, arXiv preprint, arXiv:1602.0149 [quant-ph], 2016; in Proceedings of the Workshop on “Time in Physics,” ETH Zurich, 2015 (2016)

    Google Scholar 

  26. E. Hänggi, R. Renner, S. Wolf, Efficient information-theoretic secrecy from relativity theory, in Proceedings of EUROCRYPT 2010. Lecture Notes in Computer Science (Springer, Berlin, 2010)

    Google Scholar 

  27. G. Hermann, Die naturphilosophischen Grundlagen der Quantenmechanik. Abh. Fries’schen Schule, Band 6, 69–152 (1935)

    Google Scholar 

  28. S.C. Kleene, Introduction to Metamathematics (North-Holland, Amsterdam, 1952)

    MATH  Google Scholar 

  29. A.N. Kolmogorov, Three approaches to the quantitative definition of information. Problemy Peredachi Informatsii 1(1), 3–11 (1965)

    MATH  MathSciNet  Google Scholar 

  30. R. Landauer, Information is inevitably physical. Feynman and Computation 2 (Perseus Books, Reading, 1998)

    Google Scholar 

  31. M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  32. O. Oreshkov, C. Giarmatzi, Causal and causally separable processes. arXiv preprint, arXiv:1506.05449 [quant-ph] (2015)

    Google Scholar 

  33. O. Oreshkov, F. Costa, C. Brukner, Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)

    Article  ADS  Google Scholar 

  34. S. Popescu, D. Rohrlich, Quantum non-locality as an axiom. Found. Phys. 24, 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Raz, A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Reichenbach, The principle of the common cause, in The Direction of Time, Chap. 19 (California Press, Berkeley, 1956), pp. 157–167

    Google Scholar 

  37. B. Russell, On the notion of cause. Proc. Aristot. Soc. New Ser. 13, 1–26 (1912)

    Google Scholar 

  38. E. Specker, Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 14, 239–246 (1960)

    Article  MathSciNet  Google Scholar 

  39. A. Stefanov, H. Zbinden, N. Gisin, A. Suarez, Quantum correlations with spacelike separated beam splitters in motion: experimental test of multisimultaneity. Phys. Rev. Lett. 88, 120404 (2002)

    Article  ADS  Google Scholar 

  40. T.E. Stuart, J.A. Slater, R. Colbeck, R. Renner, W. Tittel, An experimental test of all theories with predictive power beyond quantum theory. Phys. Rev. Lett. 109, 020402 (2012)

    Article  ADS  Google Scholar 

  41. L. Szilárd, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen (On the reduction of entropy in a thermodynamic system by the intervention of intelligent beings). Z. Phys. 53, 840–856 (1929)

    Article  ADS  MATH  Google Scholar 

  42. J.A. Wheeler, Information, physics, quantum: the search for link, in Proceedings III International Symposium on Foundations of Quantum Mechanics, pp. 354–368 (1989)

    Google Scholar 

  43. L. Wittgenstein, Logisch-philosophische Abhandlung. Annalen der Naturphilosophie, vol. 14 (Veit and Company, Leipzig, 1921)

    Google Scholar 

  44. S. Wolf, Non-locality without counterfactual reasoning. Phys. Rev. A 92(5), 052102 (2015)

    Google Scholar 

  45. J. Woodward, Making Things Happen: A Theory of Causal Explanation (Oxford University Press, Oxford, 2003)

    Google Scholar 

  46. C. Wood, R. Spekkens, The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015)

    Article  ADS  Google Scholar 

  47. J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Zukowski, C. Brukner, Quantum non-locality - It ain’t necessarily so…. J. Phys. A Math. Theor. 47, 424009 (2014)

    Google Scholar 

  49. W.H. Zurek, Algorithmic randomness and physical entropy. Phys. Rev. A 40(8), 4731–4751 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This text is based on a presentation at the “Workshop on Time in Physics,” organized by Sandra Ranković, Daniela Frauchiger, and Renato Renner at ETH Zurich in Summer 2015.

The authors thank Mateus Araújo, Veronika Baumann, Charles Bédard, Gilles Brassard, Harvey Brown, Caslav Brukner, Harry Buhrman, Matthias Christandl, Sandro Coretti, Fabio Costa, Bora Dakic, Frédéric Dupuis, Paul Erker, Adrien Feix, Jürg Fröhlich, Nicolas Gisin, Esther Hänggi, Arne Hansen, Marcus Huber, Lorenzo Maccone, Alberto Montina, Samuel Ranellucci, Paul Raymond-Robichaud, Louis Salvail, L. Benno Salwey, Andreas Winter, and Magdalena Zych for inspiring discussions, and the Einstein Kaffee as well as the Reitschule Bern for their inspiring atmosphere.—Grazie mille!

The authors thank Claude Crépeau for his kind invitation to present this work, among others, at the 2016 Bellairs Workshop, McGill Research Centre, Barbados.

Our work was supported by the Swiss National Science Foundation (SNF), the National Centre of Competence in Research “Quantum Science and Technology” (QSIT), the COST action on Fundamental Problems in Quantum Physics, and the Hasler Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baumeler, Ä., Wolf, S. (2017). Causality–Complexity–Consistency: Can Space-Time Be Based on Logic and Computation?. In: Renner, R., Stupar, S. (eds) Time in Physics. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-68655-4_6

Download citation

Publish with us

Policies and ethics