Skip to main content

Time, (Inverse) Temperature and Cosmological Inflation as Entanglement

  • Chapter
  • First Online:
Time in Physics
  • 1419 Accesses

Abstract

We present arguments to the effect that time and temperature can be viewed as a form of quantum entanglement. Furthermore, if temperature is thought of as arising from the quantum mechanical tunneling probability this then offers us a way of dynamically “converting” time into temperature based on the entanglement between the transmitted and reflected modes. We then show how similar entanglement-based logic can be applied to the dynamics of cosmological inflation and discuss the possibility of having observable effects of the early gravitational entanglement at the level of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 1 (2008)

    Article  Google Scholar 

  2. P.F. Gonzalez-Diaz, C.L. Sigüenza, J. Martin-Carion, Phys. Rev. D 86, 027501 (2012)

    Article  ADS  Google Scholar 

  3. D. Page, W. Wootters, Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  4. T. Banks, Nucl. Phys. B 249, 332 (1985)

    Article  ADS  Google Scholar 

  5. R. Brout, Found. Phys. 17, 603 (1987); R. Brout, G. Horwitz, D. Weil, Phys. Lett. B 192, 318 (1987); R. Brout, Z. Phys. B 68, 339 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.S. Briggs, J.M. Rost, Found. Phys. 31, 693 (2001)

    Article  MathSciNet  Google Scholar 

  7. N. Mott, Proc. R. Soc. A 126, 79 (1929)

    Article  ADS  Google Scholar 

  8. H. Everett, On the foundations of quantum mechanics. Ph.D. thesis, Princeton University, Department of Physics (1957)

    Google Scholar 

  9. Oscar C.O. Dahlsten, C. Lupo, S. Mancini, A. Serafini, Entanglement typicality. arXiv:1404.1444

    Google Scholar 

  10. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  12. I. Prigogine, Int. J. Theor. Phys. 28, 927 (1989)

    Article  Google Scholar 

  13. A. Vilenkin, Phys. Lett. B 117, 25 (1982)

    Article  ADS  Google Scholar 

  14. E.P. Tryon, Nature 246, 396 (1973)

    Article  ADS  Google Scholar 

  15. D. Atkatz, Am. J. Phys. 62, 19 (1994)

    Article  Google Scholar 

  16. J.B. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Valev, Estimation of the total mass and energy of the unverse. arXiv:1004.1035v1

    Google Scholar 

  18. S.K. Modak, D. Singleton, Int. J. Mod. Phys. D 21, 1242020 (2012); S.K. Modak, D. Singleton, Phys. Rev. D 86, 123515 (2012)

    Article  ADS  Google Scholar 

  19. L.E. Parker, D.J. Toms, Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  20. D. Baumann et al., (CMBPol Study Team), AIP Conf. Proc. 1141, 10 (2009)

    Google Scholar 

  21. S.K. Modak, D. Singleton, Phys. Rev. D 89, 068302 (2014)

    Article  ADS  Google Scholar 

  22. R.P. Woodward, Rep. Prog. Phys. 72, 126002 (2009)

    Article  ADS  Google Scholar 

  23. V. Vedral, M.B. Plenio, M. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  24. V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  25. P.T. Landsberg, Thermodynamics and Statistical Mechanics (Dover, New York, 1990)

    Google Scholar 

  26. M. Wiesniak, V. Vedral, C. Brukner, Phys. Rev. B 78, 064108 (2008)

    Article  ADS  Google Scholar 

  27. K.S. Thorne, Gravitational Waves (Cornell University Library, Ithaca, 1995)

    Google Scholar 

  28. L.M. Krauss, F. Wilczek, Phys. Rev. D 89, 047501 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges funding from the National Research Foundation (Singapore), the Ministry of Education (Singapore), the EPSRC (UK), the Templeton Foundation, the Leverhulme Trust, the Oxford Martin School, the Oxford Fell Fund and the European Union (the EU Collaborative Project TherMiQ, Grant Agreement 618074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlatko Vedral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vedral, V. (2017). Time, (Inverse) Temperature and Cosmological Inflation as Entanglement. In: Renner, R., Stupar, S. (eds) Time in Physics. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-68655-4_3

Download citation

Publish with us

Policies and ethics