Skip to main content

Power-Grids as Complex Networks: Emerging Investigations into Robustness and Stability

  • Chapter
  • First Online:
Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives

Abstract

Power grids are ubiquitous engineering systems composed of tens or even hundreds of interconnected subsystems. Such systems resemble a complex network in the sense that both the link structure and the node dynamics are influential to its overall behavior. Several decades of intensive research on power grids were not enough to uncover the intricacies of stability issues triggered by the structure-dynamics interplay. In this context, several attempts have been made to approach these issues. In this chapter, we review a number of recent results in the topic of robustness and stability in power grids, developed within the framework of the Theory of Complex Networks, especially those concerned with the description of node dynamics by means of the second-order Kuramoto model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following the definition in Ref. [38], a detour at a node u belonging to the shortest path between nodes r and s, \(P_{G}(r,s)=\left\{ r,...,u,v,...,s\right\} \), is defined as the shortest path between u and s that does not go through link (uv), that is, \(P_{G-(u,v)}(u,s)\).

  2. 2.

    Node adjacent to a dead tree.

References

  1. Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C., Vittal, V.: Causes of the 2003 major grid blackouts in north america and europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)

    Article  Google Scholar 

  2. Bergen, A.R., Hill,D.J.: A structure preserving model for power system stability analysis. IEEE Trans. Power Appar. Syst PAS 100(1), 25–35 (1981)

    Google Scholar 

  3. Bohm, C., Plant, C., Shao, J., Yang, Q.: Clustering by synchronization. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, pp. 25–28 (2010)

    Google Scholar 

  4. Carareto, R., Baptista, M.S., Grebogi, C.: Natural synchronization in power-grids with anti-correlated units. Commun. Nonlinear Sci. Numer. Simul. 18(4), 1035–1046 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Carreras, B.A., Lynch, V.E., Dobson, I., Newman, D.E.: Complex dynamics of blackouts in power transmission systems. Chaos 14, 643–652 (2004)

    Article  ADS  Google Scholar 

  6. Chassin, D.P., Posse, C.: Evaluating north american electric grid reliability using the barabasi-albert network model. Phys. A Stat. Mech. Appl. 355(2–4), 667–677 (2005)

    Article  Google Scholar 

  7. Chen, X., Sun, K., Cao, Y., Wang, S.: Identification of vulnerable lines in power grid based on complex network theory. In: IEEE Power Engineering Society General Meeting, pp. 1–6. (2007)

    Google Scholar 

  8. Choi, Y.P., Li, Z., Ha, S.Y., Xue, X., Yun, S.B.: Complete entrainment of kuramoto oscillators with inertia on networks via gradient-like flow. J. Differ. Equ. 257(7), 2591–2621 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Choi, Y-P., Ha, S-Y., Yun, S-B.: Complete synchronization of kuramoto oscillators with finite inertia. Physica D: Nonlinear Phenomena 240(1), 32–44 (2011)

    Google Scholar 

  10. Chopra. N., Spong, M.W.: On synchronization of kuramoto oscillators. In: Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain, pp. 3916–3922 (2005)

    Google Scholar 

  11. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004)

    Article  ADS  Google Scholar 

  12. Crucitti, P., Latora, V., Marchiori, M.: A topological analysis of the italian electric power grid. Physica A 338, 92–97 (2004)

    Article  ADS  Google Scholar 

  13. Dorfler. F., Bullo, F.: Synchronization and transient stability in power networks and non-uniform kuramoto oscillators. SIAM J. Control Optim. (2010)

    Google Scholar 

  14. Dorfler, F., Bullo, F.: On the critical coupling for kuramoto oscillators. SIAM J. Appl. Dyn. Syst. 10(3), 1070–1099 (2011)

    Google Scholar 

  15. Dorfler, F., Bullo, F.: Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circuits Syst. I Regul. pap. 60, 150–163 (2013)

    Article  MathSciNet  Google Scholar 

  16. Dorfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50(6), 1539–1564 (2014)

    Google Scholar 

  17. Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. Eur. Phys. J. B 61, 485–491 (2008)

    Article  ADS  Google Scholar 

  18. Union for the Coordination of Electricity Transmission (UCTE). Final Report of the Investigation Committee on the 28 September 2003 Blackout in Italy. Technical report (2004)

    Google Scholar 

  19. US-Canada Power System Outage Task Force. Final Report on the August 14, 2003 blackout in the United States and Canada. Technical report (2004)

    Google Scholar 

  20. Fortuna, L., Frasca, M., Fiore, A.S.: Analysis of the italian power grid based on kuramoto-like model. In: Physcon 2011 Leon Spain, 5-8 September 2008

    Google Scholar 

  21. Grzybowski, J.M.V., Macau, E.E.N., Yoneyama, T.: On synchronization in power-grids modelled as networks of second-order kuramoto oscillators. Chaos: an interdisciplinary. J. Nonlinear Sci. 26(11), 113113 (2016)

    Google Scholar 

  22. Hines, P., Blumsack, S., Sanchez, E.C., Barrows, C.: The topological and electrical structure of power grids. In: Conference on 43rd Hawaii International System Sciences (HICSS), pp. 5-8. 2010

    Google Scholar 

  23. Huang, L., Lai, Y.C., Gatenby, R.A.: Optimization of synchronization in complex clustered networks. Chaos: an interdisciplinary. J. Nonlinear Sci. 18(1), 013101 (2008)

    Google Scholar 

  24. Katoh, S., Ohara, S., Itoh, T.: Technologies for mitigating fluctuation caused by renewable energy sources. In: International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA) pp. 850–856 (2014)

    Google Scholar 

  25. Kundur, P.: Power System Stability and Control. McGraw-Hill (1994)

    Google Scholar 

  26. Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., Vittal, V.: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 19(3), 1387–1401 (2004)

    Google Scholar 

  27. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  28. Willis, H.L: Power Distribution Planning Reference Book. Marcel Dikker, Inc, (2004)

    Google Scholar 

  29. Liu, C., Xu, Q., Chen, Z., Bak, C.L.: Vulnerability evaluation of power system integrated with large-scale distributed generation based on complex network theory. In: 47th International Universities Power Engineering Conference (UPEC) pp. 1–5 (2012)

    Google Scholar 

  30. Liu, X. Chen, T.: Fixed-time cluster synchronization for complex networks via pinning control. arXiv:1509.03350 (2015)

  31. Liu, X., Chen, T.: Finite-time and fixed-time cluster synchronization with or without pinning control. IEEE Trans. Cybern. 99, 1–13 (2016)

    Google Scholar 

  32. McGraw, P.N., Menzinger, M.: Clustering and the synchronization of oscillator networks. Phys. Rev. E 72, 015101 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  33. Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J.: How dead ends undermine power grid stability. Nat. Commun. 5(3969), 1–8 (2014)

    Google Scholar 

  34. Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013)

    Article  Google Scholar 

  35. Menck, P.J., Kurths, J.: Topological identification of weak points in power grids. In: Nonlinear Dynamics of Electronic Systems, Proceedings of the (NDES), Vol. 205, pp. 1–4 (2012)

    Google Scholar 

  36. Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T.: Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 (2013)

    Article  Google Scholar 

  37. Carlotto, T., Onetta, M.S., Grzybowski, J.M.V.: Natural connectivity and the mitigation of cascading failures in a model of Eletrosul transmission system. In: Proceedings of the Congress of Applied and Computational Mathematics, CMAC-SUL SBMAC Curitiba, PR, Brazil (2014)

    Google Scholar 

  38. Nardelli, E., Proietti, G., Widmayer, P.: Finding the detour-critical edge of a shortest path between two nodes. Inf. Process. Lett. 67(1), 51–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nishikawa, T., Motter, A.E.: Comparative analysis of existing models for power-grid synchronization. New J. Phys. 17(1), 015012 (2015)

    Article  ADS  Google Scholar 

  40. Nixon, M., Friedman, M., Ronen, E., Friesem, A.A., Davidson, N., Kanter, I.: Synchronized cluster formation in coupled laser networks. Phys. Rev. Lett. 106, 223901 (2011)

    Article  ADS  Google Scholar 

  41. NVIDIA. CUDA technology (2007)

    Google Scholar 

  42. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., Canizares, C.A., Iravani, R., Kazerani, M., Hajimiragha, A.H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., Jimenez-Estevez, G.A., Hatziargyriou, N.D.: Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)

    Google Scholar 

  43. Olmi, S., Navas, A., Boccaletti, S., Torcini, A.: Hysteretic transitions in the kuramoto model with inertia. Phys. Rev. E 90, 042905 (2014)

    Article  ADS  Google Scholar 

  44. Pahwa, S., Hodges, A., Scoglio, C., Wood, S.: Topological analysis of the power grid and mitigation strategies against cascading failures. In: IEEE International Systems Conference, pp. 272–276 (2010)

    Google Scholar 

  45. Pecora, L., Carroll, T.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998)

    Article  ADS  Google Scholar 

  46. Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 1–8 (2014)

    Article  Google Scholar 

  47. Peng, J., Kurths, J.: Basin stability of the kuramoto-like model in small networks. Eur. Phys. J. Spec. Top. 223, 2483–2491 (2014)

    Article  Google Scholar 

  48. Pinto, R.S., Saa, A.: Synchrony-optimized networks of kuramoto oscillators with inertia. Physica A Stat. Mech. Appl. 463, 77–87 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  49. Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012)

    Article  ADS  Google Scholar 

  50. Rosas-Casals, M., Corominas-Murtra, B.: Assessing european power grid reliability by means of topological measures. Trans. Ecol. Env. 121, 515–525 (2009)

    Google Scholar 

  51. Rosas-Casals, M., Valverde, S., Sole, R.V.: Topological vulnerability of the European power grid under errors and attacks. Int. J Bifurc. Chaos 17, 2465–2475 (2007)

    Article  MATH  Google Scholar 

  52. Schmietendorf, K., Peinke, J., Friedrich, R., Kamps, O.: Self-organized synchronization and voltage stability in networks of synchronous machines. Eur. Phys. J. Spec. Top. 223(12), 2577–2592 (2014)

    Article  Google Scholar 

  53. Schultz, P., Heitzig, J., Kurths, J.: Detours around basin stability in power networks. New J. Phys. 16, 125001 (2014)

    Article  ADS  Google Scholar 

  54. Shafiullah, G.M., Oo, A.M.T.: Analysis of harmonics with renewable energy integration into the distribution network. In: IEEE Innovative Smart Grid Technologies–Asia (ISGT ASIA), pp. 1–6 (2015)

    Google Scholar 

  55. Solé, R.V., Rosas-Casals, M., Corominas-Murtra, B., Valverde, S.: Robustness of the european power grids under intentional attack. Phys. Rev. E 77, 026102 (2008)

    Article  ADS  Google Scholar 

  56. Thompson. M.J.: Fundamentals and advancements in generator synchronizing systems. In: Proceedings of the 65th Annual Conference for Protective Relay Engineers, 2-5 April , pp. 203–214 (2012)

    Google Scholar 

  57. Wang, K., Fu, X., Li, K.: Cluster synchronization in community networks with nonidentical nodes. Chaos 19, 023106 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Xu, S., Zhou, H., Li, C., Yang, X.: Vulnerability assessment of power grid based on complex network theory. In: Asia-Pacific Power and Energy Engineering Conference, pp. 1–4 (2009)

    Google Scholar 

  59. Yang, Y., Nishikawa, T., Motter, A.E.: Vulnerability and cosusceptibility determine the size of network cascades. Phys. Rev. Lett. 118, 048301 (2017)

    Article  ADS  Google Scholar 

  60. Zemanova, C., Zhou, C., Kurths, J.: Structural and functional clusters of complex brain networks. Physica D 224, 202–212 (2006)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. V. Grzybowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grzybowski, J.M.V., Macau, E.E.N., Yoneyama, T. (2018). Power-Grids as Complex Networks: Emerging Investigations into Robustness and Stability. In: Edelman, M., Macau, E., Sanjuan, M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-68109-2_14

Download citation

Publish with us

Policies and ethics