Skip to main content

Nonequilibrium Quantum Dynamics of Many-Body Systems

  • Chapter
  • First Online:
Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We review our results for the dynamics of isolated many-body quantum systems described by one-dimensional spin-1/2 models. We explain how the evolution of these systems depends on the initial state and the strength of the perturbation that takes them out of equilibrium; on the Hamiltonian, whether it is integrable or chaotic; and on the onset of multifractal eigenstates that occurs in the vicinity of the transition to a many-body localized phase. We unveil different behaviors at different time scales. We also discuss how information about the spectrum of a many-body quantum system can be extracted by the sole analysis of its time evolution, giving particular attention to the so-called correlation hole. This approach is useful for experiments that routinely study dynamics, but have limited or no direct access to spectroscopy, as experiments with cold atoms and trapped ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hahn, E.L.: Spin echoes. Phys. Rev. 80, 580 (1950)

    Article  MATH  ADS  Google Scholar 

  2. Ramanathan, C., Cappellaro, P., Viola, L., Cory, D.G.: Experimental characterization of coherent magnetization transport in a one-dimensional spin system. New J. Phys. 13, 103015 (2011)

    Article  ADS  Google Scholar 

  3. Wei, K.X., Ramanathan, C., Cappellaro, P.: Exploring localization in nuclear spin chains. arXiv:1612.05249

  4. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  5. Jurcevic, P., Lanyon, B.P., Hauke, P., Hempel, C., Zoller, P., Blatt, R., Roos, C.F.: Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202 (2014)

    Article  ADS  Google Scholar 

  6. Richerme, P., Gong, Z.X., Lee, A., Senko, C., Smith, J., Foss-Feig, M., Michalakis, S., Gorshkov, A.V., Monroe, C.: Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198 (2014)

    Article  ADS  Google Scholar 

  7. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  8. Schreiber, M., Hodgman, S.S., Bordia, P., Lüschen, H.P., Fischer, M.H., Vosk, R., Altman, E., Schneider, U., Bloch, I.: Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Kaufman, A.M., Eric Tai, A.L.M., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794 (2016)

    Article  ADS  Google Scholar 

  10. Borgonovi, F., Izrailev, F.M., Santos, L.F., Zelevinsky, V.G.: Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 626, 1 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. He, K., Santos, L.F., Wright, T.M., Rigol, M.: Single-particle and many-body analyses of a quasiperiodic integrable system after a quench. Phys. Rev. A 87, 063637 (2013)

    Article  ADS  Google Scholar 

  12. Rigol, M., Santos, L.F.: Quantum chaos and thermalization in gapped systems. Phys. Rev. A 82, 011604(R) (2010)

    Article  ADS  Google Scholar 

  13. Santos, L.F.: Transport control in low-dimensional spin-1/2 Heisenberg systems. Phys. Rev. E 78, 031125 (2008)

    Article  ADS  Google Scholar 

  14. Rego, L.G.C., Santos, L.F., Batista, V.S.: Coherent control of quantum dynamics with sequences of unitary phase-kick pulses. Annu. Rev. Phys. Chem. 60, 293 (2009)

    Google Scholar 

  15. Santos, L.F.: Transport and control in one-dimensional systems. J. Math. Phys. 50, 095211 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Santos, L.F., Mitra, A.: Domain wall dynamics in integrable and chaotic spin-1/2 chains. Phys. Rev. E 84, 016206 (2011)

    Article  ADS  Google Scholar 

  17. Santos, L.F., Dykman, M.I.: Quantum interference-induced stability of repulsively bound pairs of excitations. New J. Phys. 14, 095019 (2012)

    Article  ADS  Google Scholar 

  18. Santos, L.F., Borgonovi, F., Izrailev, F.M.: Chaos and statistical relaxation in quantum systems of interacting particles. Phys. Rev. Lett. 108, 094102 (2012)

    Article  ADS  Google Scholar 

  19. Santos, L.F., Borgonovi, F., Izrailev, F.M.: Onset of chaos and relaxation in isolated systems of interacting spins-1/2: energy shell approach. Phys. Rev. E 85, 036209 (2012)

    Article  ADS  Google Scholar 

  20. Santos, L.F., Pérez-Bernal, F.: Structure of eigenstates and quench dynamics at an excited-state quantum phase transition. Phys. Rev. A 92, 050101 (2015)

    Article  ADS  Google Scholar 

  21. Santos, L.F., Távora, M., Pérez-Bernal, F.: Excited-state quantum phase transitions in many-body systems with infinite-range interaction: localization, dynamics, and bifurcation. Phys. Rev. A 94, 012113 (2016)

    Google Scholar 

  22. F. Pérez-Bernal, L.F. Santos: Structure of eigenstates and quench dynamics at an excited-state quantum phase transition. arXiv:1604.06851 (accepted at Fortschr. Phys.)

  23. Santos, L.F., Borgonovi, F., Celardo, G.L.: Cooperative shielding in many-body systems with long-range interaction. Phys. Rev. Lett. 116, 250402 (2016)

    Article  ADS  Google Scholar 

  24. Távora, M., Torres-Herrera, E.J., Santos, L.F.: Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization. Phys. Rev. A 94, 041603 (2016)

    Article  ADS  Google Scholar 

  25. Távora, M., Torres-Herrera, E.J., Santos, L.F.: Power-law decay exponents: a dynamical criterion for predicting thermalization. Phys. Rev. A 95, 013604 (2017)

    Google Scholar 

  26. Torres-Herrera, E.J., Santos, L.F.: Quench dynamics of isolated many-body quantum systems. Phys. Rev. A 89, 043620 (2014)

    Article  ADS  Google Scholar 

  27. Torres-Herrera, E.J., Vyas, M., Santos, L.F.: General features of the relaxation dynamics of interacting quantum systems. New J. Phys. 16, 063010 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  28. Torres-Herrera, E.J., Santos, L.F.: Nonexponential fidelity decay in isolated interacting quantum systems. Phys. Rev. A 90, 033623 (2014)

    Article  ADS  Google Scholar 

  29. Torres-Herrera, E.J., Santos, L.F.: Local quenches with global effects in interacting quantum systems. Phys. Rev. E 89, 062110 (2014)

    Article  ADS  Google Scholar 

  30. Torres-Herrera, E.J., Kollmar, D., Santos, L.F.: Relaxation and thermalization of isolated many-body quantum systems. Phys. Scr. T 165, 014018 (2015)

    Article  ADS  Google Scholar 

  31. Torres-Herrera, E.J., Santos, L.F.: Dynamics at the many-body localization transition. Phys. Rev. B 92, 014208 (2015)

    Article  ADS  Google Scholar 

  32. Torres-Herrera, E.J., Távora, M., Santos, L.F.: Survival probability of the néel state in clean and disordered systems: an overview. Braz. J. Phys. 46, 239 (2016)

    Article  ADS  Google Scholar 

  33. Torres-Herrera, E.J., Santos, L.F.: Extended nonergodic states in disordered many-body quantum systems. Ann. Phys. (Berlin). 1600284 (2017)

    Google Scholar 

  34. Torres-Herrera, E.J., Karp, J., Távora, M., Santos, L.F.: Realistic many-body quantum systems vs. full random matrices: static and dynamical properties. Entropy 18, 359 (2016)

    Google Scholar 

  35. Torres-Herrera, E.J., Santos, L.F.: Dynamical manifestations of quantum chaos: correlation hole and bulge. arXiv:1702.04363 (to appear in the Phil. Trans. R. Soc. A)

  36. Torres-Herrera, E.J., García-García, A., Santos, L.F.: Generic dynamical features of quenched interacting quantum systems: survival probability, density imbalance and out-of-time-ordered correlator. arXiv:1704.06272

  37. Zangara, P.R., Dente, A.D., Torres-Herrera, E.J., Pastawski, H.M., Iucci, A., Santos, L.F.: Time fluctuations in isolated quantum systems of interacting particles. Phys. Rev. E 88, 032913 (2013)

    Article  ADS  Google Scholar 

  38. Santos, L.F., Rigol, M.: Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 81, 036206 (2010)

    Article  ADS  Google Scholar 

  39. Santos, L.F., Rigol, M.: Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Phys. Rev. E 82, 031130 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  40. Santos, L.F., Polkovnikov, A., Rigol, M.: Entropy of isolated quantum systems after a quench. Phys. Rev. Lett. 107, 040601 (2011)

    Article  ADS  Google Scholar 

  41. Santos, L.F., Polkovnikov, A., Rigol, M.: Weak and strong typicality in quantum systems. Phys. Rev. E 86, 010102 (2012)

    Article  ADS  Google Scholar 

  42. Torres-Herrera, E.J., Santos, L.F.: Effects of the interplay between initial state and Hamiltonian on the thermalization of isolated quantum many-body systems. Phys. Rev. E 88, 042121 (2013)

    Article  ADS  Google Scholar 

  43. Sutherland, B.: Beautiful Models. World Scientific, New Jersey (2005)

    Google Scholar 

  44. Caux, J.S., Mossel, J.: Remarks on the notion of quantum integrability. J. Stat Mech: Theory Exp. 2011, P02023 (2011)

    Google Scholar 

  45. Bethe, H.A.: On the theory of metal i. eigenvalues and eigenfunctions of a linear chain of atoms. Z. Phys. 71, 205 (1931)

    Article  ADS  Google Scholar 

  46. Casati, G., Valz-Gris, F., Guarnieri, I.: On the connection between quantization of nonintegrable systems and statistical theory of spectra, Lett. Nuovo Cimento (1971–1985) 28, 279 (1980)

    Google Scholar 

  47. Bohigas, O., Giannoni, M.J., Schmit, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Guhr, T., Mueller-Gröeling, A., Weidenmüller, H.A.: Random matrix theories in quantum physics: common concepts. Phys. Rep. 299, 189 (1998)

    Google Scholar 

  49. Atas, Y.Y., Bogomolny, E., Giraud, O., Roux, G.: Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett. 110, 084101 (2013)

    Google Scholar 

  50. Santos, L.F.: Integrability of a disordered Heisenberg spin-1/2 chain. J. Phys. A 37, 4723 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Hsu, T.C., d’Auriac, J.C.A.: Level repulsion in integrable and almost-integrable quantum spin models. Phys. Rev. B 47, 14291 (1993)

    Article  ADS  Google Scholar 

  52. Kudo, K., Deguchi, T.: Level statistics of xxz spin chains with discrete symmetries: analysis through finite-size effects. J. Phys. Soc. Jpn. 74, 1992 (2005)

    Google Scholar 

  53. Gubin, A., Santos, L.F.: Quantum chaos: an introduction via chains of interacting spins 1/2. Am. J. Phys. 80, 246 (2012)

    Google Scholar 

  54. Santos, L.F., Rigolin, G., Escobar, C.O.: Entanglement versus chaos in disordered spin systems. Phys. Rev. A 69, 042304 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  55. Mehta, M.L.: Random Matrices. Academic Press, Boston (1991)

    MATH  Google Scholar 

  56. Haake, F.: Quantum Signatures of Chaos. Springer, Berlin (1991)

    Google Scholar 

  57. Reichl, L.E.: The transition to chaos: conservative classical systems and quantum manifestations. Springer, New York (2004)

    Book  MATH  Google Scholar 

  58. Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., Wong, S.S.M.: Random-matrix physics—spectrum and strength fluctuations. Rev. Mod. Phys 53, 385 (1981)

    Google Scholar 

  59. Izrailev, F.: Quantum localization and statistics of quasienergy spectrum in a classically chaotic system. Phys. Lett. A 134, 13 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  60. Izrailev, F.M.: Simple models of quantum chaos: spectrum and eigenfunctions. Phys. Rep. 196, 299 (1990)

    Google Scholar 

  61. Jacquod, P., Shepelyansky, D.L.: Emergence of quantum chaos in finite interacting fermi systems. Phys. Rev. Lett. 79, 1837 (1997)

    Article  ADS  Google Scholar 

  62. Dukesz, F., Zilbergerts, M., Santos, L.F.: Interplay between interaction and (un)correlated disorder in one-dimensional many-particle systems: delocalization and global entanglement. New J. Phys. 11, 043026 (2009)

    Article  ADS  Google Scholar 

  63. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53, 36 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zelevinsky, V., Brown, B.A., Frazier, N., Horoi, M.: The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep. 276, 85 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  66. Torres-Herrera, E.J., Santos, L.F.: In: AIP Proceedings, ed. by Danielewicz, P., Zelevinsky, V. (APS, East Lansing, Michigan, 2014)

    Google Scholar 

  67. Flambaum, V.V., Izrailev, F.M.: Unconventional decay law for excited states in closed many-body systems. Phys. Rev. E 64, 026124 (2001)

    Article  ADS  Google Scholar 

  68. Izrailev, F.M., Castañeda-Mendoza, A.: Return probability: exponential versus gaussian decay. Phys. Lett. A 350, 355 (2006)

    Google Scholar 

  69. Bhattacharyya, K.: Quantum decay and the Mandelstam-Tamm-energy inequality. J. Phys. A 16, 2993 (1983)

    Google Scholar 

  70. Ufink, J.: The rate of evolution of a quantum state. Am. J. Phys. 61, 935 (1993)

    Article  ADS  Google Scholar 

  71. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  72. Santos, L.F., Dykman, M.I., Shapiro, M., Izrailev, F.M.: Strong many-particle localization and quantum computing with perpetually coupled qubits. Phys. Rev. A 71, 012317 (2005)

    Article  ADS  Google Scholar 

  73. Nandkishore, R., Huse, D.: Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

    Article  ADS  Google Scholar 

  74. Khalfin, L.A.: Contribution to the decay theory of a quasi-stationary state. Sov. Phys. JETP 6, 1053 (1958)

    MATH  ADS  Google Scholar 

  75. Muga, J.G., Ruschhaupt, A., del Campo, A.: Time in Quantum Mechanics, vol. 2. Springer, London (2009)

    Book  MATH  Google Scholar 

  76. Urbanowski, K.: General properties of the evolution of unstable states at long times. Eur. Phys. J. D 54, 25 (2009)

    Article  ADS  Google Scholar 

  77. del Campo, A.: Exact quantum decay of an interacting many-particle system: the calogero-sutherland model. New J. Phy. 18, 015014 (2016)

    Article  Google Scholar 

  78. Serbyn, M., Papić, Z., Abanin, D.A.: Thouless energy and multifractality across the many-body localization transition (2016). arXiv:1610.02389

  79. Chalker, J.T., Daniell, G.J.: Scaling, diffusion, and the integer quantized Hall effect. Phys. Rev. Lett. 61, 593 (1988)

    Article  ADS  Google Scholar 

  80. Chalker, J.: Scaling and eigenfunction correlations near a mobility edge. Physica A 167(1), 253 (1990)

    Article  ADS  Google Scholar 

  81. Ketzmerick, R., Petschel, G., Geisel, T.: Slow decay of temporal correlations in quantum systems with cantor spectra. Phys. Rev. Lett. 69, 695 (1992)

    Article  ADS  Google Scholar 

  82. Huckestein, B., Schweitzer, L.: Relation between the correlation dimensions of multifractal wave functions and spectral measures in integer quantum Hall systems. Phys. Rev. Lett. 72, 713 (1994)

    Article  ADS  Google Scholar 

  83. Huckestein, B., Klesse, R.: Wave-packet dynamics at the mobility edge in two- and three-dimensional systems. Phys. Rev. B 59, 9714 (1999)

    Article  ADS  Google Scholar 

  84. Cuevas, E., Kravtsov, V.E.: Two-eigenfunction correlation in a multifractal metal and insulator. Phys. Rev. B 76, 235119 (2007)

    Article  ADS  Google Scholar 

  85. Kravtsov, V.E., Ossipov, A., Yevtushenko, O.M.: Return probability and scaling exponents in the critical random matrix ensemble. J. Phys. A 44, 305003 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  86. Leviandier, L., Lombardi, M., Jost, R., Pique, J.P.: Fourier transform: a tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett. 56, 2449 (1986)

    Google Scholar 

  87. Guhr, T., Weidenmüller, H.: Correlations in anticrossing spectra and scattering theory. Analytical aspects. Chem. Phys. 146, 21 (1990)

    Article  Google Scholar 

  88. Alhassid, Y., Levine, R.D.: Spectral autocorrelation function in the statistical theory of energy levels. Phys. Rev. A 46, 4650 (1992)

    Article  ADS  Google Scholar 

  89. Gorin, T., Seligman, T.H.: Signatures of the correlation hole in total and partial cross sections. Phys. Rev. E 65, 026214 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

LFS was supported by the NSF grant No. DMR-1603418. EJTH acknowledges funding from PRODEP-SEP and Proyectos VIEP-BUAP, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea F. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, L.F., Torres-Herrera, E.J. (2018). Nonequilibrium Quantum Dynamics of Many-Body Systems. In: Edelman, M., Macau, E., Sanjuan, M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-68109-2_12

Download citation

Publish with us

Policies and ethics