Skip to main content

Dynamics of Particles and Bubbles Under the Action of Acoustic Radiation Force

  • Chapter
  • First Online:
Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Complex dynamics of microparticles and gaseous bubbles in an acoustic field caused by the period-averaged radiation force is considered. Recent results concerning the effects of particles’ concentration and mixing in plane and cylindrical resonators are discussed; the theory is compared with available experimental data. Modern biomedical and other applications are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acoustic Tweezers. https://en.wikipedia.org/wiki/Acoustic_tweezers

  2. Angilella, J.-R., Case, D.J., Motter, A.E.: Levitation of heavy particles against gravity in asymptotically downward flows. Chaos 27(031103), 6p (2017)

    MathSciNet  Google Scholar 

  3. Aksenov, A.V., Petrov, A.G., Shunderyuk, M.M.: The motion of solid particles in a fluid in a nonlinear ultrasonic standing wave. Doklady Phys. 56(7), 379–384 (2011)

    Article  Google Scholar 

  4. Basset, A.B.: On the motion of a sphere in a viscous liquid. Philos. Trans. R. Soc. Lond. A 179, 43–63 (1888)

    Article  MATH  ADS  Google Scholar 

  5. Belyaeva, I.Y.: Self-focusing effect in a liquid with gas bubbles. Acoust. Phys. 39(6), 520–522 (1993)

    ADS  Google Scholar 

  6. Beyer, R.T.: Lord Rayleigh and nonlinear acoustics. J. Acoust. Soc. Am. 98, 3032–3034 (1995)

    Article  ADS  Google Scholar 

  7. Beyer, R.T.: Nonlinear Acoustics. Acoustical Society of America, NY (1997)

    Google Scholar 

  8. Bjerknes, V.: Vorlesungen über Hydrodynamische Ferncräfte. Leipzig (1900); Bjerknes, V.F.K.: Fielh of Force. Columbia University Press (1906)

    Google Scholar 

  9. Boussinesq, J.: Sur la resistance que oppose un liquide indefini en repos, sans pesanteur, au mouvement varie d’une sphere solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carres et produits soient negligeables. Compt. Rend. Acad. Sci. Paris 100, 935–937 (1885)

    MATH  Google Scholar 

  10. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press (1995)

    Google Scholar 

  11. Bunkin, F.V., Kravtsov, Yu.A., Lyakhov, G.A.: Acoustic Analogues of Nonlinear-Optics Phenomena, vol. 29, no. 7, pp. 607–619 (1986)

    Google Scholar 

  12. Ding, X., Lin, S.-C. S., Li, S., Wang, L., Huang, T.J.: Manipulating single particles using standing surface acoustic waves. In: Proceedings of 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, Paper ID No. 1307 (2012)

    Google Scholar 

  13. Ding, X., Peng, Z., Lin, S.-C.S., Geri, M., Li, S., Li, P., Chen, Y., Dao, M., Suresh, S., Huang, T.J.: Cell separation using tilted-angle standing surface acoustic waves. PNAS 111(36), 12992–12997 (2014)

    Article  ADS  Google Scholar 

  14. Doinikov, A.A.: Mathematical model for collective bubble dynamics in strong ultrasound fields. J. Acoust. Soc. Am. 116(2), 821–827 (2004)

    Article  ADS  Google Scholar 

  15. Druzhinin, O.A., Ostrovsky, L.A., Stepanyants, YuA: Dynamics of particles in the steady flows of an inviscid fluid. Chaos 3, 359–367 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Druzhinin, O.A., Ostrovsky, L.A.: The influence of Basset force on particle dynamics in two-dimensional flows. Phys. D 76, 34–43 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gor’kov, L.P.: On the forces acting on a small particle in an acoustic field in an ideal fluid. Sov. Phys. Dokl. 6, 773–775 (1962)

    ADS  Google Scholar 

  18. Hassan, H.K., Ostrovsky, L.A., Stepanyants, Y.A.: Particle dynamics in a viscous fluid under the action of acoustic radiation force. Discontinuity Nonlinearity Complexity 6(3) (2017)

    Google Scholar 

  19. Hynynen, K.: Ultrasound for drug and gene delivery to the brain. Adv. Drug. Deliv. Rev. 60(10), 1209–1217 (2008)

    Article  Google Scholar 

  20. Kobelev, YuA, Ostrovsky, L.A.: Nonlinear acoustic phenomena due to bubble drift in a gas-liquid mixture. J. Acoust. Soc. Am. 85, 621–629 (1989)

    Article  ADS  Google Scholar 

  21. Kobelev, YuA, Ostrovsky, L.A., Sutin, A.M.: Self-illumination effect for acoustic waves in a liquid with gas bubbles. JETP Lett. 30, 395–398 (1979)

    ADS  Google Scholar 

  22. Kuznetsova, L.A., Coakley, W.T.: Applications of ultrasound streaming and radiation force in biosensors. Biosens. Bioelectron. 22, 1567–1577 (2007)

    Article  Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: Hydrodynamics, 4th edn. Nauka, Moscow (English, p. 1993. Fluid Mechanics, Pergamon Press, Oxford, Transl. 1988)

    Google Scholar 

  24. Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932)

    Google Scholar 

  25. Minnaert, M.: On musical air-bubbles and the sound of running water. Philos. Mag. 16(104), 235–248 (1933)

    Article  Google Scholar 

  26. Naugolnykh, K., Ostrovsky, L.: Nonlinear Wave Processes in Acoustics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  27. Nemtsov, B.E.: Effects of radiation interaction of bubbles in a liquid. Sov. Tech. Phys. Lett. 9, 368–369 (1983)

    Google Scholar 

  28. Nyborg, W.L.: Biological effects of ultrasound: development of safety guidelines. Ultrasound Med. Biol. 26(6), 911–964 (2000)

    Article  Google Scholar 

  29. Ochiai, Y., Hoshi, T., Rekimoto, J.: Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays. PLoS ONE 9(5), e97590 (2014). https://doi.org/10.1371/journal.pone.0097590

  30. Ostrovsky, L.: Concentration of microparticles and bubbles in standing waves. JASA 138(6), 3607–3612 (2015)

    Article  Google Scholar 

  31. Ostrovsky, L., Priev, A., Ponomarev, V., and Barenholz, Y.: Acoustic radiation force for rapid detection of particles in biological liquids. In: Proceedings of Acoustics Meeting, vol. 14 (162 ASA Meeting, San Diego, CA) (2011)

    Google Scholar 

  32. Pelekasis, N.A., Tsamopoulos, J.A.: Bjerknes forces between two bubbles. Part 1. Response to a step change in pressure. J. Fluid Mech. 254, 467–499. Part 2. Response to an oscillatory pressure field. J. Fluid Mech. 254, 501–527 (1993)

    Google Scholar 

  33. Priev, A., Barenholz, Y.: Ultrasonic food quality analyzer based on cylindrical standing waves. In: Proceedings of 20th International Congress on Acoustics, Sydney, Australia, 4 p (2010)

    Google Scholar 

  34. Priev, A., Sarvazyan, A.: Cylindrical standing wave resonator for liquid food quality control. J. Acoust. Soc. Am. 125, 2593 (2009)

    Article  ADS  Google Scholar 

  35. Sagoff, J.: No magic show: real-world levitation to inspire better pharmaceuticals. Argon National Laboratory, 12 September. http://www.anl.gov/articles/no-magic-show-real-world-levitation-inspire-better-pharmaceuticals (2012)

  36. Sarvazyan, A., Ostrovsky, L.: Stirring and mixing of liquids using acoustic radiation force. J. Acoust. Soc. Am. 125, 3548–3554 (2009)

    Article  ADS  Google Scholar 

  37. Sarvazyan, P., Rudenko, O.V., Swanson, S.D., Fowlkes, J.B., Emelianov, S.Y.: Shear wave elasticity imaging—a new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24, 1419–1435 (1998)

    Article  Google Scholar 

  38. Schmid, A.J., Dubbert, J., Rudov, A.A., Pedersen, J.S., Lindner, P., Karg, M., Potemkin, I.I., Richtering, W.: Multi-shell hollow nanogels with responsive shell permeability. Sci. Rep. 6, 22736 (2016)

    Article  ADS  Google Scholar 

  39. Shimada, T., Kadau, D., Shinbrot, T., Herrmann, H.J.: Swimming in granular media. Phys. Rev. E 80, 020301R (2009)

    Article  ADS  Google Scholar 

  40. Silva, G.T., Bruus, H.: Acoustic interaction forces between small particles in an ideal fluid. Phys. Rev. E 90(063007), 11p (2014)

    Google Scholar 

  41. Stepanyants, Y.A., Yeoh, G.H.: Interaction of gaseous bubbles under the action of radiation modified Bjerknes force. In: Proceedings of XXII ICTAM Congress, 25–29 August, 2008, Adelaide, Australia (2008)

    Google Scholar 

  42. Stepanyants, Y.A., Yeoh, G.H.: Particle and bubble dynamics in a creeping flow. Eur. J. Mech. - B/Fluids 28, 619–629 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Timbie, K.F., Mead, B.P., Price, R.J.: Drug and gene delivery across the blood-brain barrier with focused ultrasound. J. Control. Release 219, 61–75 (2015)

    Article  Google Scholar 

  44. Visitskii, Ye.V., Petrov, A.G., Shunderyuk, M.M.: The motion of a particle in a viscous fluid under gravity, vibration and Basset’s force. J. Appl. Math. Mech. 73, 548–557 (2009)

    Google Scholar 

  45. Wiklund, M., Hertz, H.M.: Ultrasonic enhancement of beadbased bioaffinity assays. Lab Chip 6, 1279–1292 (2006)

    Article  Google Scholar 

  46. Wilson, T.V.: How acoustic levitation works. How Stuff Works, Science, Science, Physical Science, Acoustics. http://science.howstuffworks.com/acoustic-levitation.htm (2007)

  47. Woo, J.: A short history of the development of ultrasound in obstetrics and gynecology. http://www.ob-ultrasound.net/history1.html

  48. Wood, R.W., Loomis, A.L.: The physical and biological effects of high frequency sound waves of great intensity. Philos. Mag. 4, 417–436 (1927)

    Article  Google Scholar 

  49. Yang, W.-C.: Handbook of Fluidization and Fluid-Particle Systems. CRC Press, 878 pp (2003)

    Google Scholar 

  50. Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acustica 5(167–173), 24 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev A. Ostrovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostrovsky, L.A., Stepanyants, Y.A. (2018). Dynamics of Particles and Bubbles Under the Action of Acoustic Radiation Force. In: Edelman, M., Macau, E., Sanjuan, M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-68109-2_11

Download citation

Publish with us

Policies and ethics