Skip to main content

Simultaneous Topology Optimization of Material Density and Anisotropy

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Abstract

This paper presents an optimization methodology in order to find simultaneously optimal density and anisotropy. The objective is to maximize the structure global stiffness measured by the compliance. The density and the elasticity tensor are defined as design variables. The numerical procedure is composed of finite element stress calculations and local minimization problems. Thanks to the polar method, these local minimization problems are solved analytically. The method proposed turns out to be straightforward. Two numerical results are illustrated in the 2D-case: optimal designs depending on anisotropy, and optimal design and anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaire, G., Kohn, R.V.: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A/Solids, 839–878 (1993). Elsevier. Struct. Multidiscip. Optim. 27(4), 228–242 (2004)

    Google Scholar 

  2. Arora, J., Belegundu, A.D.: Structural optimization by mathematical programming methods. AIAA J. 22(6), 854–856 (1984)

    Article  Google Scholar 

  3. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989). Springer-Verlag

    Article  Google Scholar 

  4. de Kruijf, N., Zhou, S., Li, Q., Mai, Y.-W.: Topological design of structures and composite materials with multiobjectives. Int. J. Solids Struct. 44, 7092–7109 (2007). Elsevier

    Article  MATH  Google Scholar 

  5. Desmorat, B.: Structural rigidity optimization with an initial design dependent stress field. Application to thermo-elastic stress loads. Eur. J. Mech. A/Solids, 150–159 (2012). Elsevier

    Google Scholar 

  6. Julien, C.: Conception Optimale de l’Anisotropie dans les Structures Stratifiées á Rigidité Variable par la Méthode Polaire-Génétique. Thése de doctorat, UPMC (2010)

    Google Scholar 

  7. Julien, C., Vincenti, A., Desmorat, B.: Minimisation of two-dimensional elastic energy over the entire set of thermodynamically admissible orthotropic materials: analytical resolution by the polar method (In preparation)

    Google Scholar 

  8. Peeters, D., van Baalenand, D., Abdallah, M.: Combining topology and lamination parameter optimisation. Struct. Multidiscip. Optim. 52, 105–120 (2015). Springer

    Article  MathSciNet  Google Scholar 

  9. Rion, V., Bruyneel, M.: Topology optimization of membranes made of orthotropic material. Editorial Board (2006)

    Google Scholar 

  10. Schittkowski, K.: Software for mathematical programming. In: Computational Mathematical Programming, pp. 383–451. Springer, Heidelberg (1985)

    Google Scholar 

  11. Svanberg, K.: The method of moving asymptotesa new method for structural optimization. Int. J. Numer. Meth. Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vannucci, P.: A special planar orthotropic material. J. Elast. Phys. Sci. Solids 67, 81–96 (2002). Springer

    MathSciNet  MATH  Google Scholar 

  14. Vincenti, A., Desmorat, B.: Optimal orthotropy for minimum elastic energy by the polar method. J. Elast. 102, 55–78 (2011). Springer

    Article  MathSciNet  MATH  Google Scholar 

  15. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zillober, C.: A globally convergent version of the method of moving asymptotes. Struct. Optim. 6(3), 166–174 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This research project is funded by STELIA Aerospace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narindra Ranaivomiarana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ranaivomiarana, N., Irisarri, FX., Bettebghor, D., Desmorat, B. (2018). Simultaneous Topology Optimization of Material Density and Anisotropy. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics