Skip to main content

Gradient Based Structural Optimization of a Stringer Stiffened Composite Wing Box with Variable Stringer Orientation

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Included in the following conference series:

Abstract

The structural optimization plays a key role in multidisciplinary optimization. The proof of structural integrity is a prerequisite for the performance assessment of a wing design. In addition, the modification of the structural design allows changing the bend-twist coupling properties in a beneficial way for overall cruise performance. Due to the high number of design variables affecting the mass and stiffness of a wing box, a gradient based process is established. It meets the needs of fast convergence and enables the coupling with aerodynamic analyses that provide gradients as well. A well suited parametrization of the design variables is necessary, especially for composite materials. Therefore, lamination parameters are used, which are proven to be suitable for gradient based optimization. In order to consider stiffening structures (i.e. stringer on the wing cover), a smeared stiffener approach is used. With this approach, it is not necessary to model the stringer explicitly in the Finite Element model. The influence of different stringer shapes and their orientation can be evaluated with the method suggested in this paper. In order to reduce calculation time, the numerical model is evaluated using analytic formulations for global and local stability as well as strength. The two approaches, smearing the stiffeners or explicitly modeling stiffeners, are validated by comparison of global deformations. The optimization process is applied to a representative wing box loaded with an eccentric load. The influence of different stringer orientations on the structural deformation is examined in conjunction with the optimization of lamination parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ANSYS 14.0 Documentation. ANSYS Inc. (2011)

    Google Scholar 

  2. Bloomfield, M., Diaconu, C., Weaver, P.: On feasible regions of lamination parameters for lay-up optimization of laminated composites. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465(2104), 1123–1143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dähne, S., Hühne, C.: Efficient gradient based optimization approach of composite stiffened panels in multidisciplinary environment. In: 5th Aircraft Structure Design Conference (2016)

    Google Scholar 

  4. Diaconu, C.G., Sekine, H.: Layup optimization for buckling of laminated composite shells with restricted layer angles. AIAA J. 42(10), 2153–2163 (2004)

    Article  Google Scholar 

  5. Dillinger, J.K.S., et al.: Stiffness optimization of composite wings with aeroelastic constraints. J. Aircraft 50(4), 1159–1168 (2013)

    Article  Google Scholar 

  6. Grenestedt, J.L., Gudmundson, P.: Layup optimization of composite material structures. In: Optimal Design with Advanced Materials, pp. 311–336 (1993)

    Google Scholar 

  7. Hahn, H., Tsai, S.: Introduction to Composite Materials. Taylor & Francis, Philadelphia (1980)

    Google Scholar 

  8. Herencia, J.E., Weaver, P.M., Friswell, M.I.: Optimization of long anisotropic laminated fiber composite panels with T-shaped stiffeners. AIAA J. 45(10), 2497–2509 (2007)

    Article  Google Scholar 

  9. Ijsselmuiden, S.T., Abdalla, M.M., Gürdal, Z.: Implementation of strength-based failure criteria in the lamination parameter design space. AIAA J. 46, 1826–1834 (2008)

    Article  Google Scholar 

  10. Johnson, S.G.: The NLopt nonlinear-optimization package (2010)

    Google Scholar 

  11. Kennedy, G.J., Martins, J.R.R.A.: A parallel aerostructural optimization framework for aircraft design studies. Struct. Multidiscip. Optim. 50(6), 1079–1101 (2014)

    Article  Google Scholar 

  12. Luftfahrttechnisches Handbuch für Strukturberechnung (HSB), DASA-Airbus, Bremen, Prof. L. Schwarmann, in German and English available at technical information library (TIB) at Hannover. IASB (Industrie Ausschuss Struktur Berechnungsunterlagen) (2009)

    Google Scholar 

  13. Marin, L., et al.: Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos. Struct. 94(11), 3321–3326 (2012)

    Article  Google Scholar 

  14. Nemeth, M.P.: A Treatise on Equivalent-Plate Stiffnesses for Stiffened Laminated-Composite Plates and Plate-Like Lattices. National Aeronautics and Space Administration, Langley Research Center (2011)

    Google Scholar 

  15. Setoodeh, S., Abdalla, M.M., Gürdal, Z.: Approximate feasible regions for lamination parameters AIAA-2006-6973. In: Eleventh AIAA/ISSMO Multidisciplinary Analysis and Optimisation Conference, Portsmouth, Virginia, 68 September 2006

    Google Scholar 

  16. Seydel, E.: On the buckling of rectangular isotropic or orthogonal-isotropicplates by tangential stresses. Ing. Arch. (1933)

    Google Scholar 

  17. Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tsai, S.W., Pagano, N.J.: Invariant properties of composite materials. Technical report, DTIC Document (1968)

    Google Scholar 

  19. VDI: VDI 2014 Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund Berechnung. Technical report, VDI (2006)

    Google Scholar 

  20. Weaver, P.M., Nemeth, M.P.: Improved design formulas for buckling of orthotropic plates under combined loading. AIAA J. 46(9), 2391–2396 (2008)

    Article  Google Scholar 

  21. Wiedemann, D.J.: Leichtbau Elemente und Konstruktion, zweite edn. Springer, Heidelberg (2007)

    Google Scholar 

  22. Wunderlich, T., Dähne, S.: Aeroelastic tailoring of an NLF forward swept wing. DLR contribution to LuFo IV joint research project AeroStruct (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Dähne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dähne, S., Hühne, C. (2018). Gradient Based Structural Optimization of a Stringer Stiffened Composite Wing Box with Variable Stringer Orientation. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics