Skip to main content

Metamodel-Based Multidisciplinary Design Optimization of a General Aviation Aircraft

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Abstract

Computational burden is still a significant challenge in the in multidisciplinary design optimization (MDO) of complex engineering systems. This challenge can be arising from the curse of dimensionality of the design space and the multiplicity of disciplines involved in the design problem. Tremendous efforts have been made to improve the computational efficiency, especially in the field of MDO. Meta-modeling is one of the powerful tools to facilitate this problem and has been received increasing attention in the past decades. Meta-models are used to provide simpler models instead of the complex original models and by admitting a small percentage of error reduces computing time of the problem. Kriging meta-model, due to its high efficiency in medium dimension problems has been attracted the attention of many researchers. Due to lack of continuity in the complex design problems, creating a comprehensive and appropriate meta-model with acceptable accuracy to cover the entire design space is difficult and almost impossible. This paper proposed a strategy to improve the accuracy of the created meta-models using the elimination of outlier data from sampled points and re-designing the effective Kriging meta-model parameters. The proposed strategy is applied to the conceptual design of a General Aviation Aircraft (GAA) using MDO methodology and appropriate Kriging meta-model. Meta-models of the design disciplines including propulsion, aerodynamics, weight and sizing, performance criteria and stability disciplines are created and integrated based on Multidisciplinary Design Feasibility (MDF) structure to improve the aircraft performance. The gross weight of the aircraft and cruise phase range are considered as the objective functions. The NSGA-II multi-objective evolutionary optimization algorithm is utilized to demonstrate a set of possible answers in the form of the Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Google Scholar 

  2. Kleijnen, J.P.: A comment on Blanning’s “Metamodel for sensitivity analysis: the regression metamodel in simulation”. Interfaces 5(3), 21–23 (1975)

    Article  Google Scholar 

  3. Schmit, L.A.: Structural synthesis-its genesis and development. AIAA J. 19(10), 1249–1263 (1981)

    Article  Google Scholar 

  4. Schmit, L.A., Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12(5), 692–699 (1974)

    Article  Google Scholar 

  5. Barthelemy, J.-F., Haftka, R.T.: Approximation concepts for optimum structural design—a review. Struct. Optim. 5(3), 129–144 (1993)

    Article  Google Scholar 

  6. Haftka, R.T., Nachlas, J.A., Watson, L.T., Rizzo, T., Desai, R.: Two-point constraint approximation in structural optimization. Comput. Meth. Appl. Mech. Eng. 60(3), 289–301 (1987)

    Article  MATH  Google Scholar 

  7. Fadel, G., Riley, M., Barthelemy, J.: Two point exponential approximation method for structural optimization. Struct. Optim. 2(2), 117–124 (1990)

    Article  Google Scholar 

  8. Vanderplaats, G.: Effective use of numerical optimization in structural design. Finite Elem. Anal. Des. 6(1), 97–112 (1989)

    Article  MATH  Google Scholar 

  9. Schoofs, A.J.G.: Experimental design and structural optimization. In: Structural Optimization, pp. 307–314. Springer, Dordrecht (1988)

    Google Scholar 

  10. Rikards, R.: Elaboration of optimal design models for objects from data of experiments. In: Optimal Design With Advanced Materials, pp. 18–20 (1993)

    Google Scholar 

  11. Simpson, T., Toropov, V., Balabanov, V., Viana, F.: Design and analysis of computer experiments in multidisciplinary design optimization: a review of how far we have come-or not. In: Proceeding of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 5802

    Google Scholar 

  12. Balabanov, V., Kaufman, M., Knill, D., Haim, D., Golovidov, O., Giunta, A., Haftka, R., Grossman, B., Mason, W., Watson, L.: Dependence of optimal structural weight on aerodynamic shape for a high speed civil transport. In: 6th Symposium on Multidisciplinary Analysis and Optimization, p. 4046 (1996)

    Google Scholar 

  13. Koch, P.N., Simpson, T.W., Allen, J.K., Mistree, F.: Statistical approximations for multidisciplinary design optimization: the problem of size. J. Airc. 36(1), 275–286 (1999)

    Article  Google Scholar 

  14. Simpson, T.W., Mauery, T.M., Korte, J.J., Mistree, F.: Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39(12), 2233–2241 (2001)

    Article  Google Scholar 

  15. Venter, G., Haftka, R.T., Starnes, J.H.: Construction of response surface approximations for design optimization. AIAA J. 36(12), 2242–2249 (1998)

    Article  Google Scholar 

  16. Roux, W., Stander, N., Haftka, R.: Response surface approximations for structural optimization. In: 6th Symposium on Multidisciplinary Analysis and Optimization, p. 4042 (1998)

    Google Scholar 

  17. Giunta, A., Wojtkiewicz, S., Eldred, M.: Overview of modern design of experiments methods for computational simulations. In: 41st Aerospace Sciences Meeting and Exhibit, p. 649 (2003)

    Google Scholar 

  18. Koehler, J., Owen, A.: 9 computer experiments. In: Handbook of Statistics, vol. 13, pp. 261–308 (1996)

    Google Scholar 

  19. Simpson, T.W., Lin, D.K., Chen, W.: Sampling strategies for computer experiments: design and analysis. Int. J. Reliab. Appl. 2(3), 209–240 (2001)

    Google Scholar 

  20. Liu, W., Batill, S.: Gradient-enhanced neural network response surface approximations. In: 8th Symposium on Multidisciplinary Analysis and Optimization, p. 4923 (2000)

    Google Scholar 

  21. Liu, W., Batill, S.: Gradient-enhanced response surface approximations using kriging models. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 5456 (2002)

    Google Scholar 

  22. van Keulen, F., Vervenne, K.: Gradient-enhanced response surface building. Struct. Multi. Optim. 27(5), 337–351 (2004)

    Google Scholar 

  23. Dyn, N., Levin, D., Rippa, S.: Numerical procedures for surface fitting of scattered data by radial functions. SIAM J. Sci. Stat. Comput. 7(2), 639–659 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

  25. Mullur, A.A., Messac, A.: Metamodeling using extended radial basis functions: a comparative approach. Eng. Comput. 21(3), 203–217 (2006)

    Article  Google Scholar 

  26. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Google Scholar 

  27. Ver Hoef, J.M., Cressie, N.A., Glenn-Lewin, D.C.: Spatial models for spatial statistics: some unification. J. Veg. Sci. 4(4), 441–452 (1993)

    Article  Google Scholar 

  28. Etman, L.F.P., Van Campen, D., Schoofs, A.: Optimization of multibody systems using approximation concepts. In: IUTAM Symposium on Optimization of Mechanical Systems, pp. 81–88 (1996)

    Google Scholar 

  29. Giunta, A.A.: Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods, Thesis, Virginia Polytechnic Institute and State University (1997)

    Google Scholar 

  30. Sasena, M.J.: Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations, Thesis, General Motors (2002)

    Google Scholar 

  31. Simpson, T.: A concept exploration method for product family design. Ph.D. dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (1998)

    Google Scholar 

  32. Brown, M., Gunn, S.R., Lewis, H.G.: Support vector machines for optimal classification and spectral unmixing. Ecol. Model. 120(2), 167–179 (1999)

    Article  Google Scholar 

  33. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  34. Gearhart, C., Wang, B.: Bayesian metrics for comparing response surface models of data with uncertainty. Struct. Multi. Optim. 22(3), 198–207 (2001)

    Article  Google Scholar 

  35. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multi. Optim. 23(1), 1–13 (2001)

    Article  Google Scholar 

  36. Yang, R., Gu, L., Liaw, L., Gearhart, C., Tho, C., Liu, X., Wang, B.: Approximations for safety optimization of large systems. In: Proceedings of the ASME 2000 Design Engineering and Technical Conferences, pp. 10–13 (2000)

    Google Scholar 

  37. Keane, A.: Wing optimization using design of experiment, response surface, and data fusion methods. J. Aircr. 40(4), 741–750 (2003)

    Article  Google Scholar 

  38. Gano, S.E., Renaud, J.E., Sanders, B.: Hybrid variable fidelity optimization by using a kriging-based scaling function. AIAA J. 43(11), 2422–2433 (2005)

    Article  Google Scholar 

  39. Gano, S.E., Renaud, J.E., Martin, J.D., Simpson, T.W.: Update strategies for kriging models used in variable fidelity optimization. Struct. Multi. Optim. 32(4), 287–298 (2006)

    Article  Google Scholar 

  40. Leary, S.J., Bhaskar, A., Keane, A.J.: A knowledge-based approach to response surface modelling in multifidelity optimization. J. Global Optim. 26(3), 297–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Forrester, A.I., Sóbester, A., Keane, A.J.: Multi-fidelity optimization via surrogate modelling. Proc. Royal Soc. Lond. Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Balabanov, V., Venter, G.: Multi-fidelity optimization with high-fidelity analysis and low-fidelity gradients. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 4459 (2004)

    Google Scholar 

  43. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 41(4), 687–696 (2003)

    Article  Google Scholar 

  44. Kodiyalam, S., Yang, R., Gu, L.: High performance computing and surrogate modeling for rapid visualization with multidisciplinary optimization. AIAA J. 42(11), 2347–2354 (2004)

    Article  Google Scholar 

  45. Lian, Y., Liou, M.-S.: Multiobjective optimization using coupled response surface model and evolutionary algorithm. AIAA J. 43(6), 1316–1325 (2005)

    Article  Google Scholar 

  46. Shao, T., Krishnamurty, S., Wilmes, G.: Preference-based surrogate modeling in engineering design. AIAA J. 45(11), 2688–2701 (2007)

    Article  Google Scholar 

  47. Samad, A., Kim, K.-Y., Goel, T., Haftka, R.T., Shyy, W.: Multiple surrogate modeling for axial compressor blade shape optimization. J. Propul. Power 24(2), 301–310 (2008)

    Article  Google Scholar 

  48. Paiva, R.M., Carvalho, A.R.D., Crawford, C., Suleman, A.: Comparison of surrogate models in a multidisciplinary optimization framework for wing design. AIAA J. 48(5), 995–1006 (2010)

    Article  Google Scholar 

  49. Singh, G., Grandhi, R.V.: Mixed-variable optimization strategy employing multifidelity simulation and surrogate models. AIAA J. 48(1), 215–223 (2010)

    Article  Google Scholar 

  50. Kuya, Y., Takeda, K., Zhang, X., Forrester, A.I.J.: Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J. 49(2), 289–298 (2011)

    Article  Google Scholar 

  51. Koziel, S., Leifsson, L.: Surrogate-based aerodynamic shape optimization by variable-resolution models. AIAA J. 51(1), 94–106 (2012)

    Article  Google Scholar 

  52. Shimoyama, K., Kawai, S., Alonso, J.J.: Dynamic adaptive sampling based on Kriging surrogate models for efficient uncertainty quantification. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1470 (2013)

    Google Scholar 

  53. Lindhorst, K., Haupt, M., Horst, P.: Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes. AIAA J. 52(9), 1952–1966 (2014)

    Article  Google Scholar 

  54. Leifsson, L., Koziel, S., Tesfahunegn, Y.A.: Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogates. AIAA J. 54(2), 531–541 (2015)

    Article  Google Scholar 

  55. Song, C., Han, Z., Zhang, Y.: A new formulation of gradient-enhanced surrogate model and application to aerodynamic design. In: 34th AIAA Applied Aerodynamics Conference, p. 3869 (2016)

    Google Scholar 

  56. Fox, J., Bil, C., Carrese, R.: Particle swarm optimization with surrogate modelling for passive vortex generators. In: 55th AIAA Aerospace Sciences Meeting, p. 1858 (2017)

    Google Scholar 

  57. Gudmundsson, S.: General Aviation Aircraft Design: Applied Methods and Procedures. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  58. Raymer, D.P.: Aircraft Design: A Conceptual Approach and Rds-Student, Software for Aircraft Design, Sizing, and Performance Set (AIAA Education). AIAA (American Institute of Aeronautics & Ast), Reston (2006)

    Google Scholar 

  59. Nicolai, L.M., Carichner, G.: Fundamentals of Aircraft and Airship Design. American Institute of Aeronautics and Astronautics, Reston (2001)

    Google Scholar 

  60. Torenbeek, E.: Synthesis of Subsonic Airplane Design: An Introduction to The Preliminary Design of Subsonic General Aviation and Transport Aircraft, With Emphasis on Layout, Aerodynamic Design, Propulsion and Performance. Springer, Dordrecht (2013)

    Google Scholar 

  61. Abbott, I.H., Von Doenhoff, A.E.: Theory of wing Sections, Including a Summary of Airfoil Data. Courier Corporation, North Chelmsford (1959)

    Google Scholar 

  62. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  63. Lam, X., Kim, Y., Hoang, A., Park, C.: Coupled aerostructural design optimization using the kriging model and integrated multiobjective optimization algorithm. J. Optim. Theor. Appl. 142(3), 533–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Farghadani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roshanian, J., Bataleblu, A.A., Farghadani, M.H., Ebrahimi, B. (2018). Metamodel-Based Multidisciplinary Design Optimization of a General Aviation Aircraft. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics