Skip to main content

Generation and Comparative Genomics of Synthetic Dengue Viruses

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10562))

Included in the following conference series:

  • 896 Accesses

Abstract

Synthetic virology is an important multidisciplinary scientific field, with emerging applications in biotechnology and medicine, aiming at developing methods to generate and engineer synthetic viruses. Here we demonstrate a full multidisciplinary pipeline for generation and analysis of synthetic RNA viruses and specifically apply it to Dengue virus type 2 (DENV-2). The major steps of the pipeline include comparative genomics of endogenous and synthetic viral strains. In particular, we show that although the synthetic DENV-2 viruses were found to have lower nucleotide variability, their phenotype, as reflected in the study of the AG129 mouse model morbidity, RNA levels, and neutralization antibodies, is similar or even more pathogenic in comparison to the wildtype master strain. These results may suggest that synthetic DENV-2 may enhance virulence if the correct sequence is selected. The approach reported here can be used for understanding the functionality and the fitness effects of any set of mutations in viral RNA. It can be also used for editing RNA viruses for various target applications.

E. Goz and Y. Tsalenchuck—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sainsbury, F., Cañizares, M.C., Lomonossoff, G.P.: Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu. Rev. Phytopathol. 48, 437–455 (2010)

    Article  Google Scholar 

  2. Kaufman, H.L., Kohlhapp, F.J., Zloza, A.: Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015)

    Article  Google Scholar 

  3. Reyes, A., Semenkovich, N.P., Whiteson, K., Rohwer, F., Gordon, J.I.: Going viral: next-generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol. 10, 607–617 (2012)

    Article  Google Scholar 

  4. Kay, M.A., Glorioso, J.C., Naldini, L.: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40 (2001)

    Article  Google Scholar 

  5. Soto, C.M., Ratna, B.R.: Virus hybrids as nanomaterials for biotechnology. Curr. Opin. Biotechnol. 21, 426–438 (2010)

    Article  Google Scholar 

  6. Aubry, F., Nougairede, A., de Fabritus, L., Querat, G., Gould, E.A., de Lamballerie, X.: Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J. Gen. Virol. 95, 2462–2467 (2014)

    Article  Google Scholar 

  7. Gadea, G., Bos, S., Krejbich-Trotot, P., Clain, E., Viranaicken, W., El-Kalamouni, C., Mavingui, P., Desprs, P.: A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology 497, 157–162 (2016)

    Article  Google Scholar 

  8. Aubry, F., Nougair’de, A., de Fabritus, L., Piorkowski, G., Gould, E.A., de Lamballerie, X.: ISA-Lation of single-stranded positive-sense RNA viruses from non-infectious clinical/animal samples. PLoS ONE 10, e0138703 (2015)

    Article  Google Scholar 

  9. Du, R., Wang, M., Hu, Z., Wang, H., Deng, F.: An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus. Virol. Sin. 30, 354–362 (2015)

    Article  Google Scholar 

  10. Pu, S.-Y., Wu, R.-H., Yang, C.-C., Jao, T.-M., Tsai, M.-H., Wang, J.-C., Lin, H.-M., Chao, Y.-S., Yueh, A.: Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J. Virol. 85, 2927–2941 (2011)

    Article  Google Scholar 

  11. Santos, J.J., Cordeiro, M.T., Bertani, G.R., Marques, E.T., Gil, L.H.: Construction and characterisation of a complete reverse genetics system of dengue virus type. Memórias do Inst. Oswaldo Cruz 108, 983–991 (2013)

    Article  Google Scholar 

  12. Siridechadilok, B., Gomutsukhavadee, M., Sawaengpol, T., Sangiambut, S., Puttikhunt, C., Chin-inmanu, K., Suriyaphol, P., Malasit, P., Screaton, G., Mongkolsapaya, J.: A simplified positive-sense-RNA virus construction approach that enhances analysis throughput. J. Virol. 87, 12667–12674 (2013)

    Article  Google Scholar 

  13. Steinhauer, D.A., Holland, J.J.: Rapid evolution of RNA viruses. Annu. Rev. Microbiol. 41, 409–431 (1987)

    Article  Google Scholar 

  14. Jenkins, G.M., Rambaut, A., Pybus, O.G., Holmes, E.C.: Rates of molecular evolution in RNA Viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 54, 156–165 (2002)

    Article  Google Scholar 

  15. Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J.W., Barclay, W., Evans, D.J.: Identification of a cis-acting replication element within the poliovirus coding region. J. Virol. 74, 4590–4600 (2000)

    Article  Google Scholar 

  16. Goz, E., Tuller, T.: Widespread signatures of local mRNA folding structure selection in four Dengue virus serotypes. BMC Genomics. 16(Suppl 1), S4 (2015)

    Article  Google Scholar 

  17. Alvarez, D.E., Lodeiro, M.F., Ludueña, S.J., Pietrasanta, L.I., Gamarnik, A.V.: Long-range RNA-RNA interactions circularize the dengue virus genome. J. Virol. 79, 6631–6643 (2005)

    Article  Google Scholar 

  18. Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martínez, E., Nathan, M.B., Pelegrino, J.L., Simmons, C., Yoksan, S., Peeling, R.W.: Dengue: a continuing global threat. Nat. Rev. Microbiol. 8, S7–S16 (2010)

    Article  Google Scholar 

  19. Lauring, A.S., Frydman, J., Andino, R.: The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11, 327–336 (2013)

    Article  Google Scholar 

  20. Lauring, A.S., Andino, R., Boone, C., Holden, D., Liu, T.: Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 6, e1001005 (2010)

    Article  Google Scholar 

  21. Eigen, M.: Viral quasispecies. Sci. Am. 269, 42–49 (1993)

    Article  Google Scholar 

  22. Jenkins, G.M., Pagel, M., Gould, E.A., de A Zanotto, P.M., Holmes, E.C.: Evolution of base composition and codon usage bias in the genus Flavivirus. J. Mol. Evol. 52, 383–390 (2001)

    Article  Google Scholar 

  23. Burns, C.C., Shaw, J., Campagnoli, R., Jorba, J., Vincent, A., Quay, J., Kew, O.: Modulation of poliovirus replicative fitness in hela cells by deoptimization of synonymous codon usage in the capsid region. J. Virol. 80, 3259–3272 (2006)

    Article  Google Scholar 

  24. Gu, W., Zhou, T., Ma, J., Sun, X., Lu, Z.: Analysis of synonymous codon usage in SARS coronavirus and other viruses in the Nidovirales. Virus Res. 101, 155–161 (2004)

    Article  Google Scholar 

  25. Tao, P., Dai, L., Luo, M., Tang, F., Tien, P., Pan, Z.: Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 38, 104–112 (2009)

    Article  Google Scholar 

  26. Jia, R., Cheng, A., Wang, M., Xin, H., Guo, Y., Zhu, D., Qi, X., Zhao, L., Ge, H., Chen, X.: Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes 38, 96–103 (2009)

    Article  Google Scholar 

  27. Zhou, J.-H., Zhang, J., Chen, H.-T., Ma, L.-N., Liu, Y.-S.: Analysis of synonymous codon usage in foot-and-mouth disease virus. Vet. Res. Commun. 34, 393–404 (2010)

    Article  Google Scholar 

  28. Liu, Y., Zhou, J., Chen, H., Ma, L., Pejsak, Z., Ding, Y., Zhang, J.: The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. Infect. Genet. Evol. 11, 1168–1173 (2011)

    Article  Google Scholar 

  29. Das, S., Paul, S., Dutta, C.: Synonymous codon usage in adenoviruses: influence of mutation, selection and protein hydropathy. Virus Res. 117, 227–236 (2006)

    Article  Google Scholar 

  30. Aragonès, L., Guix, S., Ribes, E., Bosch, A., Pintó, R.M.: Fine-Tuning translation kinetics selection as the driving force of codon usage bias in the hepatitis a virus capsid. PLoS Pathog. 6, e1000797 (2010)

    Google Scholar 

  31. Bull, J.J., Molineux, I.J., Wilke, C.O.: Slow fitness recovery in a codon-modified viral genome. Mol. Biol. Evol. 29, 2997–3004 (2012)

    Article  Google Scholar 

  32. Rocha, E.P.C.: Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res. 14, 2279–2286 (2004)

    Article  Google Scholar 

  33. Dana, A., Tuller, T.: The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42, 9171–9181 (2014)

    Article  Google Scholar 

  34. Goz, E., Mioduser, O., Diament, A., Tuller, T.: Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda. DNA Res. 24(4), 333–342 (2017)

    Google Scholar 

  35. Martrus, G., Nevot, M., Andres, C., Clotet, B., Martinez, M.A.: Changes in codon-pair bias of human immunodeficiency virus type 1 have profound effects on virus replication in cell culture. Retrovirology. 10, 78 (2013)

    Article  Google Scholar 

  36. Coleman, J.R., Papamichail, D., Skiena, S., Futcher, B., Wimmer, E., Mueller, S.: Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008)

    Article  Google Scholar 

  37. Mueller, S., Coleman, J.R., Papamichail, D., Ward, C.B., Nimnual, A., Futcher, B., Skiena, S., Wimmer, E.: Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol. 28, 723–726 (2010)

    Article  Google Scholar 

  38. Tulloch, F., Atkinson, N.J., Evans, D.J., Ryan, M.D., Simmonds, P.: RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies. Elife. 3, e04531 (2014)

    Article  Google Scholar 

  39. Greenbaum, B.D., Levine, A.J., Bhanot, G., Rabadan, R.: Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog. 4, e1000079 (2008)

    Article  Google Scholar 

  40. Rima, B.K., McFerran, N.: V: Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J. Gen. Virol. 78, 2859–2870 (1997)

    Article  Google Scholar 

  41. Karlin, S., Doerfler, W., Cardon, L.R.: Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J. Virol. 68, 2889–2897 (1994)

    Google Scholar 

  42. Yakovchuk, P., Protozanova, E., Frank-Kamenetskii, M.D.: Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006)

    Article  Google Scholar 

  43. Cheng, X., Virk, N., Chen, W., Ji, S., Ji, S., Sun, Y., Wu, X.: CpG usage in RNA viruses: data and hypotheses. PLoS ONE 8, e74109 (2013)

    Article  Google Scholar 

  44. Wang, A.H., Hakoshima, T., van der Marel, G., van Boom, J.H., Rich, A.: AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTAm 5CG). Cell 37, 321–331 (1984)

    Article  Google Scholar 

  45. Goz, E., Tuller, T.: Evidence of a direct evolutionary selection for strong folding and mutational robustness within HIV coding regions. J. Comput. Biol. 23, 641–650 (2016)

    Article  Google Scholar 

  46. Domingo, E., Sheldon, J., Perales, C.: Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76, 159–216 (2012)

    Article  Google Scholar 

  47. Read, A.F.: The evolution of virulence. Trends Microbiol. 2, 73–76 (1994)

    Article  Google Scholar 

  48. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    Article  Google Scholar 

  49. Garrison, E., Marth, G.: Haplotype-based variant detection from short-read sequencing (2012)

    Google Scholar 

  50. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A.: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)

    Article  Google Scholar 

  51. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., Higgins, D.G.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011)

    Article  Google Scholar 

  52. Lorenz, R., Bernhart, S.H., Höner Zu Siederdissen, C.: ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011)

    Article  Google Scholar 

  53. Wright, F.: The effective number of codons used in a gene. Gene 87, 23–29 (1990)

    Article  Google Scholar 

  54. Kariin, S., Burge, C.: Dinucleotide relative abundance extremes: a genomic signature. Trends Genet. 11, 283–290 (1995)

    Article  Google Scholar 

Download references

Acknowledgment

E.G. is supported, in part, by a fellowship from the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University. T.T. is partially supported by the Minerva ARCHES award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Tuller .

Editor information

Editors and Affiliations

Appendix: Supplementary Material

Appendix: Supplementary Material

  1. 1.

    No difference in various genomic features in 100 codon regions around SNV compared to regions that do not contains SNVs

    figure a
  2. 2.

    Multiple alignment of 618 DENV-2 genomes analyzed in this study - conservation scores

Multiple alignment conservation score was defined by us as an average sum-of-pair score (SP). For the i-th column in the alignment we define P ijk  = 1 for every pair A ij and A ik of elements (either nucleotides of amino acids, depending on the type of the aligned sequences) which are equal to each other and P ijk  = 0 otherwise. The score Si for the ith column is

$$ S_{i} = \frac{1}{{N\left( {N - 1} \right)/2}}\mathop \sum \limits_{j = 1}^{N} \mathop \sum \limits_{k = j + 1}^{N} P_{ijk} $$

and the SP for the alignment is:

$$ SP = \frac{1}{M}\mathop \sum \limits_{i = 1}^{M} S_{i} $$

The following values summarize the SP scores for the multiple alignment of 618 DENV-2 coding sequences analyzed in this study: SP(amino acids) = 0.97, SP(nucleotides) = 0.94

  1. 3.

    List of regions selected for strong/weak folding energy used in this study

Coordinates of regions predicted to be selected for strong/weak folding energy can be found in the following tables (see details in reference [16] in main text):

Each row in a file corresponds to one region (number of rows = number of regions) and contains 3 comma separated values x, y, z in the following order:

Region start coordinate, region end coordinate, maximum folding selection conservation index (FSCI) in the cluster.

The coordinates are given with respect to the start of the polyprotein coding sequence in the reference genome NC_001474.2. E.g., coordinates x, y for some region correspond to the nucleotides at x-th and y-th positions in the coding sequence of NC_001474.2

figure bfigure b

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Goz, E. et al. (2017). Generation and Comparative Genomics of Synthetic Dengue Viruses. In: Meidanis, J., Nakhleh, L. (eds) Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science(), vol 10562. Springer, Cham. https://doi.org/10.1007/978-3-319-67979-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67979-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67978-5

  • Online ISBN: 978-3-319-67979-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics