Skip to main content

On the Rank-Distance Median of 3 Permutations

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10562))

Included in the following conference series:

Abstract

Recently, Pereira Zanetti et al. [9] have proposed a new definition of a distance for which the computational complexity of the median problem is currently unknown. In this formulation, each genome is represented as a permutation on n elements that is the product of disjoint cycles of length 1 (telomeres) and length 2 (adjacencies). The permutations are converted into their matrix representation, and the rank distance d is used to define the median.

In their paper, the authors provide an \(O(n^3)\) algorithm for determining three candidate medians, prove the tight approximation ratio \(\frac{4}{3}\), and provide a sufficient condition for their candidates to be true medians. They also conduct some experiments that suggest that their method is accurate on simulated and real data.

In this paper, we extend their results and provide the following:

  • 2 invariants characterizing the problem of finding the median of 3 matrices

  • a strengthening of one of the results in the work of Pereira Zanetti et al.

  • a sufficient condition for optimality that can be checked in O(n) time

  • a faster, \(O(n^2)\) algorithm for determining the median under this condition

  • a new heuristic algorithm for this problem based on compressed sensing.

J. Meidanis is on Leave from University of Campinas, Campinas, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5(3), 555–570 (1998)

    Article  Google Scholar 

  2. Moret, B.M., Wang, L.S., Warnow, T., Wyman, S.K.: New approaches for reconstructing phylogenies from gene order data. Bioinformatics 17, 165–173 (2001)

    Article  Google Scholar 

  3. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  4. Caprara, A.: The reversal median problem. INFORMS J. Comput. 15(1), 93–113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  6. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10, 120 (2009)

    Article  Google Scholar 

  7. Feijao, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. Trans. Comput. Biol. Bioinform. 8, 1318–1329 (2011)

    Article  Google Scholar 

  8. Pe’er, I., Shamir, R.: Approximation algorithms for the median problem in the breakpoint model. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics, pp. 225–241. Springer, Berlin (2000)

    Chapter  Google Scholar 

  9. Pereira Zanetti, J.P., Biller, P., Meidanis, J.: Median approximations for genomes modeled as matrices. Bull. Math. Biol. 78(4), 786–814 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory A 25(3), 226–241 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)

    Article  Google Scholar 

  12. Feijao, P., Meidanis, J.: Extending the algebraic formalism for genome rearrangements to include linear chromosomes. Trans. Comput. Biol. Bioinform. 10, 819–831 (2012)

    Article  Google Scholar 

  13. Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics. Springer, New York (2008)

    Book  MATH  Google Scholar 

  14. Arvind, V., Joglekar, P.S.: Algorithmic problems for metrics on permutation groups. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 136–147. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77566-9_12

    Chapter  Google Scholar 

  15. Aspvall, B., Shiloach, Y.: A fast algorithm for solving systems of linear equatlons with two variables per equation. Linear Algebra Appl. 34, 117–124 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. LPsolve Team: lp_solve 5.5. http://lpsolve.sourceforge.net/. Accessed 22 July 2017

  18. IBM: CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/. Accessed 22 July 2017

  19. Lugo, M.: The cycle structure of compositions of random involutions (2009). https://arxiv.org/abs/0911.3604

  20. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  21. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Syst., 1695 (2006). http://igraph.org

  22. Bates, D., Maechler, M.: Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-10. http://CRAN.R-project.org/package=Matrix

  23. Trefethen, L.N., Bau, D.: Numerical Linear Algebra, 1st edn. SIAM: Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  24. Biller, P., Guéguen, L., Tannier, E.: Moments of genome evolution by double cut-and-join. BMC Bioinform. 16(Suppl 14), S7 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Cedric Chauve and Pedro Feijão for helpful discussions. LC would like to acknowledge financial support from NSERC, CIHR, Genome Canada and the Sloan Foundation. JM would like to acknowledge financial support from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Meidanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chindelevitch, L., Meidanis, J. (2017). On the Rank-Distance Median of 3 Permutations. In: Meidanis, J., Nakhleh, L. (eds) Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science(), vol 10562. Springer, Cham. https://doi.org/10.1007/978-3-319-67979-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67979-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67978-5

  • Online ISBN: 978-3-319-67979-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics