Skip to main content

Relativistic High-Energy-Density Systems

  • Chapter
  • First Online:
High-Energy-Density Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2692 Accesses

Abstract

This chapter begins with a discussion of what constitutes a relativistic system at high energy density and how to produce such systems. The primary focus is on lasers intense enough to create relativistic electron motion. The chapter proceeds to discuss the motion of individual electrons in laser pulses and then the problem of producing the interaction of such laser pulses with sold targets , as opposed to with plasma blown off their surfaces. Topics discussed further related to laser irradiation of solids include absorption, harmonic generation, and induced transparency. The discussion then turns to particle acceleration. Wakefield acceleration of electrons is discussed at length. Ion acceleration by target sheaths, by laser pistons, and by Coulomb explosions are discussed next. After that, the chapter analyzes hole drilling by such lasers and the collisionless shocks that may result. The chapter ends with a brief review of several other phenomena, including magnetic-field generation, betatron X-ray production, positron production, nuclear reactions, and phenomena involving intense beams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach DR, Casperson DE, Forslund DW, Gitomer SJ, Goldstone PD, Hauer A, Kephart JF, Kindel JM, Kristal R, Kyrala GA, Mitchell KB, Hulsteyn DBv, Williams AH (1983) Intensity-dependent absorption in 10.6-μm laser-illuminated spheres. Phys Rev Lett 50(26):2082–2085

    Google Scholar 

  • Beg FN, Bell AR, Dangor AE, Danson CN, Fews AP, Glinsky ME, Hammel BA, Lee P, Norreys PA, Tatarakis M (1997) A study of picosecond laser-solid interactions up to 1019 W/cm2. Phys Plasmas 4(2):447–457. https://doi.org/10.1063/1.872103

  • Bezzerides B, Jones RD, Forslund DW (1982) Plasma mechanism for ultraviolet harmonic radiation due to intense CO2 light. Phys Rev Lett 49(3):202–205

    Google Scholar 

  • Bonnaud G, Gibbon P, Kindel J, Wiliams E (1991) Laser interaction with a sharp-edged overdense plasma. Las Part Beams 9(2):339–354

    Google Scholar 

  • Brunel F (1987) Not-so-resonant, resonant absorption. Phys Rev Lett 59(1):52–55

    Google Scholar 

  • Brunel F (1988) Anomalous absorption of high intensity subpicosecond laser pulses. Phys Fluids 31(9):2714–2719

    Google Scholar 

  • Bulanov SV, Naumova NM, Pegoraro F (1994) Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys Plasmas 1(3):745–757

    Google Scholar 

  • Bulanov SS, Macchi A, Maksimchuk A, Matsuoka T, Nees J, Pegoraro F (2007) Electromagnetic pulse reflection at self-generated plasma mirrors: Laser pulse shaping and high order harmonic generation. Phys Plasmas 14(9). https://doi.org/10.1063/1.2776906

  • Burnett NH, Baldis HA, Richardson MC, Enright GD (1977) Harmonic generation in co2 laser target interaction. Appl Phys Lett 31(3):172–174

    Google Scholar 

  • Bychenkov VY, Tikhonchuk BT (1996) Magnetic field generation by short ultraintense laser pulse in underdense plasmas. Las Part Beams 14(1):55–62

    Google Scholar 

  • Carman RL, Forslund DW, Kindel JM (1981) Visible harmonic emission as a way of measuring profile steepening. Phys Rev Lett 46(1):29–32

    Google Scholar 

  • Chaker M, Kieffer JC, Matte JP, Pepin H, Audebert P, Maine P, Strickland D, Bado P, Mourou G (1991) Interaction of a 1 psec laser pulse with solid matter. Phys Fluids B 3(1):167–175

    Google Scholar 

  • Chambers DM, Norreys PA, Dangor AE, Marjoribanks RS, Moustaizis S, Neely D, Preston SG, Wark JS, Watts I, Zepf M (1998) Feasibility study of high harmonic generation from short wavelength lasers interacting with solid targets. Opt Commun 148:289–294

    Google Scholar 

  • Chen P (2003) Laboratory investigations of the extreme universe. Assoc Asia Pac Phys Soc Bull 13(1)

    Google Scholar 

  • Chen H, Wilks SC, Bonlie JD, Liang EP, Myatt J, Price DF, Meyerhofer DD, Beiersdorfer P (2009) Relativistic positron creation using ultraintense short pulse lasers. Phys Rev Lett 102(10). https://doi.org/10.1103/PhysRevLett.102.105001

  • Chen H, Wilks SC, Meyerhofer DD, Bonlie J, Chen CD, Chen SN, Courtois C, Elberson L, Gregori G, Kruer W, Landoas O, Mithen J, Myatt J, Murphy CD, Nilson P, Price D, Schneider M, Shepherd R, Stoeckl C, Tabak M, Tommasini R, Beiersdorfer P (2010) Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. Phys Rev Lett 105(1). https://doi.org/10.1103/PhysRevLett.105.015003

  • Combis P, Cazalis B, David J, Froger A, Louis-Jacquet M, Meyer B, Nierat G, Saleres A, Sibille G, Thiell G, wagon F (1991) Low-fluence laser target coupling. Las Part Beams 9(2):403–420

    Google Scholar 

  • Corde S, Adli E, Allen JM, An W, Clarke CI, Clausse B, Clayton CE, Delahaye JP, Frederico J, Gessner S, Green SZ, Hogan MJ, Joshi C, Litos M, Lu W, Marsh KA, Mori WB, Vafaei-Najafabadi N, Walz D, Yakimenko V (2016) High-field plasma acceleration in a high-ionization-potential gas. Nat Commun 7. https://doi.org/10.1038/ncomms11898

  • Cowan TE, Hunt AW, Phillips TW, Wilks SC, al e (2000) Photonuclear fission from high energy electrons from ultraintense laser-solid interactions. Phys Rev Lett 84(5):903–906

    Google Scholar 

  • Danson CN, Angood S, Booth G, Collier J, Damerell AR, Edwards CB, Flintoff PS, Govans J, Hancock S, Hatton P, Hawkes SJ, Hutchinson MHR, Key MH, Hernandez-Gomez C, Leach J, Lester W, Neely D, Norreys P, Notley M, Pepler DA, Reason CJ, Rodkiss DA, Toss IN, Toner WT, Trentelman M, Walczak JA, Wellstood RA, Winstone TB, Wyatt RWW, Wyborn BE (1999) Focused intensities of 1020 W/cm2 with the upgraded Vulcan CPA interaction facility. Int Soc Opt Eng 3492:82–93

    Google Scholar 

  • Davidson RC, National, Research, Council, Report (2003) High-energy-density physics: the X-games of contemporary science. National Academies Press, Washington

    Google Scholar 

  • Ditmire T, Tisch JWG, Springate E, Mason MB, Hay N, Smith RA, Marangos J, Hutchinson MHR (1997) High-energy ions produced in explosions of superheated atomic clusters. Nature 386(6620):54–56. https://doi.org/10.1038/386054a0

  • Doumy G, Quere F, Gobert O, Perdrix M, Martin P, Audebert P, Gauthier JC, Geindre JP, Wittmann T (2004) Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys Rev E 69(2). https://doi.org/10.1103/PhysRevE.69.026402

  • Dromey B, Kar S, Zepf M, Foster P (2004) The plasma mirror – a subpicosecond optical switch for ultrahigh power lasers. Rev Sci Instrum 75(3):645–649. https://doi.org/10.1063/1.1646737

  • Esirkepov T, Borghesi M, Bulanov SV, Morou G, Tajima T (2004) Highly efficient relativistic-ion generation in the laser-piston regime. Phys Rev Lett 92(17):175003-1–175003-4

    Google Scholar 

  • Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau JP, Burgy F, Malka V (2004) A laser-plasma accelerator producing monoenergetic electron beams. Nature 431(7008):541–544

    Google Scholar 

  • Fedosejevs R, Ottmann R, Sigel R, Kuhnle G, Szatmari S, Schafer FP (1990) Absorption of subpicosecond ultraviolet laser pulses in high-density plasma. Appl Phys B 50:79–99

    Google Scholar 

  • Forslund DW, Shonk CR (1970a) Formation and structure of electrostatic collisionless shocks. Phys Rev Lett 25(25):1699–1702

    Google Scholar 

  • Forslund DW, Shonk CR (1970b) Numerical simulation of electrostatic counterstreaming instabilities in ion beams. Phys Rev Lett 25(5):281–284

    Google Scholar 

  • Gahn C, Tsakiris GD, Pretzler G, Witte KJ, Delfin C, Wahlstrom CG, Habs D (2000) Generating positrons with femtosecond-laser pulses. Appl Phys Lett 77(17):2662–2664. https://doi.org/10.1063/1.1319526

  • Geddes CGR, Toth C, van Tilborg J, Esarey E, Schroeder CB, Bruhwiler D, Nieter C, Cary J, Leemans WP (2004) High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431(7008):538–541

    Google Scholar 

  • Geissler M, Schreiber J, Meyer-ter Vehn J (2006) Bubble acceleration of electrons with few-cycle laser pulses. New J Phys 8:186

    Google Scholar 

  • Gibbon P (1994) Efficient production of fast electrons from femtosecond laser interaction with solid targets. Phys Rev Lett 73(5):664–667

    Google Scholar 

  • Gibbon P (1996) Harmonic generation by femtosecond laser-solid interaction: a coherent “water-window” light source? Phys Rev Lett 76(1):50–53

    Google Scholar 

  • Gibbon P (1997) High-order harmonic generation in plasmas. IEEE J Quantum Electron 33(11):1915–1924

    Google Scholar 

  • Gibbon P, Bell AR (1992) Collisionless absorption in sharp-edged plasmas. Phys Rev Lett 68(10):1535–1538

    Google Scholar 

  • Gibbon P, Andreev AA, Platonov KY (2012) A kinematic model of relativistic laser absorption in an overdense plasma. Plasma Phys Control Fusion 54(4). https://doi.org/10.1088/0741-3335/54/4/045001

  • Grebogi C, Tripathi VK, Chen HH (1983) Harmonic generation of radiation in a steep density profile. Phys Fluids 26(7):1904–1908

    Google Scholar 

  • Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca RA, Silva LO, Mori WB, Joshi C (2012) Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat Phys 8(1):95–99

    Google Scholar 

  • Jiang Z, Kieffer JC, Matte JP, Chaker M, Peyrusse O, Gilles D, Corn G, Maksimchuk A, Coe S, Mourou G (1995) X-ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2. Phys Plasmas 2(5):1702–1711

    Google Scholar 

  • Joshi C, Blue B, Clayton CE, Dodd E, Huang C, Marsh KA, Mori WB, Wang S, Hogan MJ, O’Connell C, Siemann R, Watz D, Muggli P, Katsouleas T, Lee S (2002) High energy density plasma science with an ultrarelativistic electron beam. Phys Plasmas 9(5):1845–1855

    Google Scholar 

  • Kaplan AE, Dubersky BY, Shkolnikov PL (2003) Shock shells in coulomb explosions of nanoclusters. Phys Rev Lett 91(14):143401-1–143401-4

    Google Scholar 

  • Kato S, Bhattacharyya B, Nishiguchi A, Mima K (1993) Wave breaking and absorption efficiency for short pulse p-polarized laser light in a very steep density gradient. Phys Fluids B 5(2):564–570

    Google Scholar 

  • Kmetec JD, Gordon CL, Macklin JJ, Lemoff BE, Brown GS, Harris SE (1992) Mev X-ray generation with a femtosecond laser. Phys Rev Lett 68(10):1527–1530

    Google Scholar 

  • Kruer WL (1988) The physics of laser plasma interactions. Addison-Wesley Publishing Company, Redwood City

    Google Scholar 

  • Landau LD, Lifshitz EM (1987) The classical theory of fields, course in theoretical physics, vol 2, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Liang EP, Wilks SC, Tabak M (1998) Pair production by ultraintense lasers. Phys Rev Lett 81(22):4887–4890

    Google Scholar 

  • Lichters R, Meyer-ter Vehn J, Pukhov A (1996) Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys Plasmas 3(9):3425–3437

    Google Scholar 

  • Lindley RA, Gilgenbach RM, Ching CH (1993) Resonant holographic interferometry of laser-ablation plumes. Appl Phys Lett 63(7):888–890

    Google Scholar 

  • Liu X, Umstadter D (1992) Competition between ponderomotive and thermal pressures in short-scale-length laser-plasmas. Phys Rev Lett 69:1935–1938

    Google Scholar 

  • Mangles SPD, Murphy CD, Najmudin Z, Thomas AGR, Collier JL, Dangor AE, Divall EJ, Foster PS, Gallacher JG, Hooker CJ, Jaroszynski DA, Langley AJ, Mori WB, Norreys PA, Tsung FS, Viskup R, Walton BR, Krushelnick K (2004) Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431(7008):535–538

    Google Scholar 

  • Meyerhofer DD, Chen H, Delettrez JA, Soom B, Uchida S, Yaakobi B (1993) Resonance absorption in high-intensity contrast, picosecond laser-plasma interactions. Phys Fluids B 5(7):2584–2588

    Google Scholar 

  • Mora P (2003) Plasma expansion into a vacuum. Phys Rev Lett 90:185002

    Google Scholar 

  • Mourou G, Umstadter D (1992) Development and applications of compact high-intensity lasers. Phys Fluids B 4(7):2315–2325

    Google Scholar 

  • Mulser P, Bauer D, Ruhl H (2008) Collisionless laser-energy conversion by anharmonic resonance. Phys Rev Lett 101(22). https://doi.org/10.1103/PhysRevLett.101.225002

  • Nantel M, Ma G, Gu S, Cote CY, Itatani J, Umstadter D (1998) Pressure ionization and line merging in strongly coupled plasmas produced by 100-fs laser pulses. Phys Rev Lett 80(20):4442–4445

    Google Scholar 

  • Norreys PA, Zepf M, Moustaizis S, Fews AP, Zhang J, Lee P, Bakarezos M, Danson CN, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh FN, Wark JS, Dangor AE (1996) Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets. Phys Rev Lett 76(11):1832–1835

    Google Scholar 

  • Ping Y, Shepherd R, Lasinski BF, Tabak M, Chen H, Chung HK, Fournier KB, Hansen SB, Kemp A, Liedahl DA, Widmann K, Wilks SC, Rozmus W, Sherlock M (2008) Absorption of short laser pulses on solid targets in the ultrarelativistic regime. Phys Rev Lett 100(8). https://doi.org/10.1103/PhysRevLett.100.085004

  • Pukhov A, Meyer-ter Vehn J (1996) Relativistic magnetic self-channelings of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys Rev Lett 76(21):3975–3878

    Google Scholar 

  • Pukhov A, Meyer-ter Vehn J (2002) Laser wake field acceleration: the highly non-linear broken-wave regime. Appl Phys B-Lasers Opt 74(4–5):355–361

    Google Scholar 

  • Rousse A, Audebert P, Geinder JP, Failles F, Gauthier JC, Mysrowicz A, Grillon G, Antonetti A (1994) Efficient kalpha X-ray source from femtosecond laser-produced plasmas. Phys Rev E 50(3):2200–2207

    Google Scholar 

  • Rousse A, Phuoc KT, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau JP, Umstadter D, Hulin D (2004) Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys Rev Lett 93(13). https://doi.org/10.1103/PhysRevLett.93.135005

  • Rozmus W, Tikhonchuk VT, Cauble R (1996) A model of ultrashort laser pulse absorption in solid targets. Phys Plasmas 3(1):360–367

    Article  ADS  Google Scholar 

  • Ruhl H, Mulser P (1995) Relativistic Vlasov simulation of intense fs laser pulse-matter interaction. Phys Lett A 205:388–392

    Article  ADS  Google Scholar 

  • Sauerbrey R, Fure J, LeBlanc SP, van Wonterghem B, Teubner U, Schafer FP (1994) Reflectivity of laser-produced plasmas generated by a high intensity ultrashort pulse. Phys Plasmas 1(5):1635–1642

    Article  ADS  Google Scholar 

  • Silva LO, Marti M, Davies JR, Fonseca RA, Ren C, Tsung FS, Mori WB (2004) Proton shock acceleration in laser-plasma interactions. Phys Rev Lett 92(1):015002-1–015002-4

    Google Scholar 

  • Sudan RN (1993) Mechanism for the generation of 109 g magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys Rev Lett 70(20):3075–3078

    Article  ADS  Google Scholar 

  • Tajima T, Dawson JM (1979) Laser electron accelerator. Phys Rev Lett 43(4):267–270

    Article  ADS  Google Scholar 

  • Wilks SC, Kruer WL, Tabak M, Langdon AB (1992) Absorption of ultra-intense laser pulses. Phys Rev Lett 69(9):1383–1386

    Article  ADS  Google Scholar 

  • Wilks SC, Kruer WL, Mori WB (1993) Odd harmonic generation of ultra-intense laser pulses reflected from an overdense plasma. IEEE Trans Plasma Sci 21(1):120–124

    Article  ADS  Google Scholar 

  • Zhao L (1998) Experimental studies of harmonic generation from solid-density plasmas produced by picosecond ultra-intense laser pulses, Ph.D., University of Toronto

    Google Scholar 

  • Zweiback J, Cowan TE, Hartley JH, Howell R, Wharton KB, Crane JK, Yanovsky VP, Hays G, Smith RA, Ditmire T (2002) Detailed study of nuclear fusion from femtosecond laser-driven explosions of deuterium clusters. Phys Plasmas 9(7):3108

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drake, R.P. (2018). Relativistic High-Energy-Density Systems. In: High-Energy-Density Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-67711-8_13

Download citation

Publish with us

Policies and ethics