Skip to main content

Study of Dynamic Factors in Indoor Positioning for Harsh Environments

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (UCAmI 2017)

Abstract

This paper presents a study of the impact of dynamic factors on indoor positioning. A positioning system is presented that provides advanced information services based on two subsystems: Wi-Fi and Bluetooth Low Energy (BLE). The first subsystem was intended to position users with not very high levels of accuracy and precision, but not too far from reality, and the second one was intended to position users with greater precision. It is designed for use in stations and terminals of public transportation systems in which the conditions are “hostile” or unfavourable. Experimental results demonstrate that, using different devices for both offline and online phase, RSS differences, Euclidean distance and comparing fingerprints with Weighted k-Nearest Neighbours (WKNN) algorithm, the system is able to position users with reasonable values of accuracy and precision: for Wi-Fi, with only 3 samples, depending on the orientation and compared with 3 neighbours, an average accuracy between 4.15 and 4.58 m and a precision in the range 4–7 m or less 90% of the time were obtained; for BLE, best accuracy results were obtained by comparison with 2 neighbours, giving a position error of 1.59 m and a CDF value of 2.83 m or less 90% of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Au, A.W.S., Feng, C., Valaee, S., Reyes, S., Sorour, S., Markowitz, S.N., Gold, D., Gordon, K., Eizenman, M.: Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device. IEEE Trans. Mob. Comput. 12(10), 2050–2062 (2013)

    Article  Google Scholar 

  2. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings IEEE INFOCOM, the Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Reaching the Promised Land of Communications, Tel Aviv, Israel, 26–30 March, pp. 775–784 (2000)

    Google Scholar 

  3. Baniukevic, A., Jensen, C.S., Lu, H.: Hybrid indoor positioning with Wi-Fi and Bluetooth: architecture and performance. In: 2013 IEEE 14th International Conference on Mobile Data Management, Milan, Italy, 3–6 June 2013, vol. 1, pp. 207–216 (2013)

    Google Scholar 

  4. de Blasio, G., Quesada-Arencibia, A., García, C.R., Molina-Gil, J.M., Caballero-Gil, C.: Study on an indoor positioning system for harsh environments based on Wi-Fi and Bluetooth low energy. Sensors 17(6), 1299 (2017)

    Article  Google Scholar 

  5. de Blasio, G., Quesada-Arencibia, A., García-Rodríguez, C.R., Molina-Gil, J.M., Caballero-Gil, C.: Ubiquitous signaling system for public road transport network. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI/IWAAL/AmIHEALTH -2016. LNCS, vol. 10070, pp. 445–457. Springer, Cham (2016). doi:10.1007/978-3-319-48799-1_49

    Chapter  Google Scholar 

  6. Brena, R.F., García-Vázquez, J., Galván-Tejada, C.E., Rodríguez, D.M., Rosales Jr., C.V., J.F.: Evolution of indoor positioning technologies: a survey. J. Sens. 2017, 2630413:1–2630413:21 (2017)

    Google Scholar 

  7. Castillo-Cara, M., Huaranga-Junco, E., Mondragón-Ruiz, G., Salazar, A., Barbosa, L.O., Antúnez, E.A.: Ray: smart indoor/outdoor routes for the blind using Bluetooth 4.0 BLE. Procedia Comput. Sci. 83, 690–694 (2016)

    Article  Google Scholar 

  8. Chapre, Y., Ignjatovic, A., Seneviratne, A., Jha, S.: Csi-mimo: indoor Wi-Fi fingerprinting system. In: 39th Annual IEEE Conference on Local Computer Networks, pp. 202–209, September 2014

    Google Scholar 

  9. Dickinson, P., Cielniak, G., Szymanezyk, O., Mannion, M.: Indoor positioning of shoppers using a network of Bluetooth Low Energy beacons. In: 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8, October 2016

    Google Scholar 

  10. Dong, F., Chen, Y., Liu, J., Ning, Q., Piao, S.: A calibration-free localization solution for handling signal strength variance. In: Proceedings of the 2nd International Conference on Mobile Entity Localization and Tracking in GPS-less Environments, pp. 79–90 (2009)

    Google Scholar 

  11. Faragher, R., Harle, R.: Location fingerprinting with Bluetooth Low Energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015)

    Article  Google Scholar 

  12. Ge, T.: Indoor positioning system based on Bluetooth Low Energy for blind or visually impaired users. Master’s thesis, KTH Royal Institute of Technology, School of Information and Communication Technology (ICT), Department of Communication Systems, October 2015

    Google Scholar 

  13. He, S., Chan, S.: Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun. Surv. Tut. 18, 466–490 (2016)

    Article  Google Scholar 

  14. Honkavirta, V., Perälä, T., All-Löytty, S., Piché, R.: A comparative survey of WLAN location fingerprinting methods. In: Proceedings of the 6th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 19 March 2009, pp. 243–251 (2009)

    Google Scholar 

  15. Hossain, A.K.M.M., Jin, Y., Soh, W.S., Van, H.N.: SSD: a robust RF location fingerprint addressing mobile devices’ heterogeneity. IEEE Trans. Mob. Comput. 12(1), 65–77 (2013)

    Article  Google Scholar 

  16. Kaemarungsi, K., Krishnamurthy, P.: Properties of indoor received signal strength for WLAN location fingerprinting. In: Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston, MA, USA, 22–25 August 2004, pp. 14–23 (2004)

    Google Scholar 

  17. Kajioka, S., Mori, T., Uchiya, T., Takumi, I., Matsuo, H.: Experiment of indoor position presumption based on RSSI of Bluetooth LE beacon. In: IEEE 3rd Global Conference on Consumer Electronics, Tokyo, Japan, 7–10 October 2014, pp. 337–339 (2014)

    Google Scholar 

  18. King, T., Haenselmann, T., Effelsberg, W.: Deployment, calibration, and measurement factors for position errors in 802.11-based indoor positioning systems. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 17–34. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75160-1_2

    Chapter  Google Scholar 

  19. Kjaergaard, M.: Indoor location fingerprinting with heterogeneous clients. Pervasive Mob. Comput. 7, 31–43 (2011)

    Article  Google Scholar 

  20. Ladd, A.M., Bekris, K., Rudys, A., Kavraki, L., Wallach, D.: Robotics-based location sensing using wireless ethernet. Wirel. Netw. 11, 189–204 (2005)

    Article  Google Scholar 

  21. Liu, H., Darabi, H., Banerjee, P.P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C 37(6), 1067–1080 (2007)

    Article  Google Scholar 

  22. Mautz, R.: Indoor positioning technologies. Master’s thesis, Institute of Geodesy and Photogrammetry, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, February 2012

    Google Scholar 

  23. Metola, E., Aparicio, S., Tarrío, P., Casar, J.R.: Comparison of localization methods using calibrated and simulated fingerprints for indoor systems based on Bluetooth and WLAN technologies. In: Proceedings MADRINET 10 (2009)

    Google Scholar 

  24. Moder, T., Hafner, P., Wieser, W.: Indoor positioning for visually impaired people based on smartphones. In: Proceedings of the 14th International Conference Computers Helping People with Special Needs, Paris, France, 9–11 July 2014, pp. 441–444 (2014)

    Google Scholar 

  25. Torres-Sospedra, J., Montoliu, R., Trilles, S., Belmonte, O., Huerta, J.: Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems. Expert Syst. Appl. 42, 9263–9278 (2015)

    Article  Google Scholar 

  26. Zhuang, Y., Yang, J., Li, J., Qi, L., El-Sheimy, N.: Smartphone-based indoor localization with Bluetooth Low Energy beacons. Sensors 16, 596 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel de Blasio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

de Blasio, G., Quesada-Arencibia, A., García, C.R., Molina-Gil, J.M., Caballero-Gil, C. (2017). Study of Dynamic Factors in Indoor Positioning for Harsh Environments. In: Ochoa, S., Singh, P., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science(), vol 10586. Springer, Cham. https://doi.org/10.1007/978-3-319-67585-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67585-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67584-8

  • Online ISBN: 978-3-319-67585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics