Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 365 Accesses

Abstract

A partial solution to the Higgs mass hierarchy problem is developed using the slow flow of coupling constants near a conformal fixed point. Under the addition of a small number of carefully chosen new matter fields, we can expect the Higgs mass to remain small and protected without UV divergences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This work is appended to this dissertation from [1].

  2. 2.

    A model with a gauge boson top partner has already appeared [4], but in that case the gauge boson was a superpartner of the top quark.

  3. 3.

    We thank Hsin-Chia Cheng for pointing out this possibility.

References

  1. R. Houtz, K. Colwell, J. Terning, Little conformal symmetry. hep-ph/1603.00030

  2. R. Barbieri, A. Strumia, The ‘LEP paradox’. hep-ph/0007265

  3. Z. Chacko, H.S. Goh, R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry. Phys. Rev. Lett. 96, 231802 (2006). hep-ph/0506256; S. Chang, L.J. Hall, N. Weiner, A Supersymmetric twin Higgs. Phys. Rev. D 75, 035009 (2007). hep-ph/0604076; G. Burdman, Z. Chacko, H.S. Goh, R. Harnik, Folded supersymmetry and the LEP paradox. J. High Energy Phys. 0702, 009 (2007). hep-ph/0609152; A. Falkowski, S. Pokorski, M. Schmaltz, Twin SUSY. Phys. Rev. D 74, 035003 (2006) hep-ph/0604066. N. Craig, K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs. J. High Energy Phys. 1403, 140 (2014). hep-ph/1312.1341; N. Craig, S. Knapen, P. Longhi, The orbifold Higgs. J. High Energy Phys. 1503, 106 (2015). hep-ph/1411.7393; G. Burdman, Z. Chacko, R. Harnik, L. de Lima, C.B. Verhaaren, Colorless top partners, a 125 GeV Higgs, and the limits on naturalness. Phys. Rev. D 91(5), 055007 (2015). hep-ph/1411.3310; D. Curtin, C. Verhaaren, Discovering uncolored naturalness in exotic Higgs decays. J. High Energy Phys. 1512, 72 (2015). hep-ph/1506.06141; D. Curtin, P. Saraswat, Towards a no-lose theorem for naturalness. hep-ph/1509.04284; Z. Chacko, D. Curtin, C. Verhaaren, A quirky probe of neutral naturalness. hep-ph/1512.05782

  4. H. Cai, H.C. Cheng, J. Terning, A spin-1 top quark superpartner. Phys. Rev. Lett. 101, 171805 (2008). hep-ph/0806.0386

  5. G.M. Tavares, M. Schmaltz, W. Skiba, Higgs mass naturalness and scale invariance in the UV. Phys. Rev. D 89(1), 015009 (2014). hep-ph/1308.0025

  6. W.A. Bardeen, On naturalness in the standard model, in Presented at the 1995 Ontake Summer Institute, Ontake Mountain, Aug 27–Sep 2, 1995, FERMILAB-CONF-95-391-T; P.H. Frampton, C. Vafa, Conformal approach to particle phenomenology. hep-th/9903226; W. Altmannshofer, W.A. Bardeen, M. Bauer, M. Carena, J.D. Lykken, Light dark matter, naturalness, and the radiative origin of the electroweak scale. J. High. Energy Phys. 1501, 032 (2015). hep-ph/1408.3429; J. Guo, Z. Kang, Higgs naturalness and dark matter stability by scale invariance. Nucl. Phys. B 898, 415 (2015). hep-ph/1401.5609; A. Farzinnia, H.J. He, J. Ren, Natural electroweak symmetry breaking from scale invariant Higgs mechanism. Phys. Lett. B 727, 141 (2013). hep-ph/1308.0295

  7. C. Csáki, W. Skiba, J. Terning, Beta functions of orbifold theories and the hierarchy problem. Phys. Rev. D 61, 025019 (2000). hep-th/9906057

  8. M. Chaichian, R.G. Felipe, K. Huitu, On quadratic divergences and the Higgs mass. Phys. Lett. B 363, 101 (1995). hep-ph/9509223; D.R.T. Jones, Comment on ‘Bare Higgs mass at Planck scale’. Phys. Rev. D 88(9), 098301 (2013). hep-ph/1309.7335

  9. R. Slansky, Group theory for unified model building. Phys. Rep. 79(1), (1981)

  10. M.J.G. Veltman, The infrared - ultraviolet connection. Acta Phys. Polon. B 12, 437 (1981)

    Google Scholar 

  11. M.E. Machacek, M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization. Nucl. Phys. B 222, 83 (1983); M.E. Machacek, M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings. Nucl. Phys. B 236, 221 (1984); M.E. Machacek, M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings. Nucl. Phys. B 249, 70 (1985)

  12. A. Arvanitaki, C. Davis, P.W. Graham, J.G. Wacker, One loop predictions of the finely tuned SSM. Phys. Rev. D 70, 117703 (2004). hep-ph/0406034

  13. B. Pendleton, G.G. Ross, Mass and mixing angle predictions from infrared fixed points. Phys. Lett. B 98, 291 (1981); C.T. Hill, Quark and Lepton masses from renormalization group fixed points. Phys. Rev. D 24, 691 (1981); J.W. Halley, E.A. Paschos, H. Usler, Numerical studies on the renormalization of the mass matrices. Phys. Lett. B 155, 107 (1985). J. Bagger, S. Dimopoulos, E. Masso, Probing the desert with fermion masses. Phys. Rev. Lett. 55, 1450 (1985); J. Bagger, S. Dimopoulos, E. Masso, Renormalization group constraints in supersymmetric theories. Phys. Rev. Lett. 55, 920 (1985); V.D. Barger, M.S. Berger, P. Ohmann, R.J.N. Phillips, Phenomenological implications of the m(t) RGE fixed point for SUSY Higgs boson searches. Phys. Lett. B 314, 351 (1993) hep-ph/9304295; P. Langacker, N. Polonsky, The Bottom mass prediction in supersymmetric grand unification: uncertainties and constraints. Phys. Rev. D 49, 1454 (1994). hep-ph/9306205; M. Carena, C.E.M. Wagner, Higgs and supersymmetric particle signals at the infrared fixed point of the top quark mass. Nucl. Phys. B 452, 45 (1995). hep-ph/9408253

  14. T. Banks, A. Zaks, On the phase structure of vector-like gauge theories with massless fermions. Nucl. Phys. B 196, 189 (1982)

  15. J. Preskill, Gauge anomalies in an effective field theory. Ann. Phys. 210, 323 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Dine, W. Fischler, M. Srednicki, Supersymmetric technicolor. Nucl. Phys. B 189, 575 (1981); S. Dimopoulos, S. Raby, Supercolor. Nucl. Phys. B 192, 353 (1981); L. Alvarez-Gaumé, M. Claudson, M.B. Wise, Low-energy supersymmetry. Nucl. Phys. B 207, 96 (1982); M. Dine, A.E. Nelson, Dynamical supersymmetry breaking at low-energies. Phys. Rev. D 48, 1277 (1993). hep-ph/9303230 M. Dine, A.E. Nelson, Y. Shirman, Low-energy dynamical supersymmetry breaking simplified. Phys. Rev. D 51, 1362 (1995). hep-ph/9408384; M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, New tools for low-energy dynamical supersymmetry breaking. Phys. Rev. D 53, 2658 (1996). hep-ph/9507378; G.F. Giudice, R. Rattazzi, Theories with Gauge-mediated supersymmetry breaking. Phys. Rep. 322, 419 (1999). hep-ph/9801271

  17. M. Nardecchia, A. Romanino, R. Ziegler, General aspects of tree level gauge mediation. J. High Energy Phys. 1003, 024 (2010). hep-ph/0912.5482

  18. K.A. Olive et al., Particle data group. Chin. Phys. C38, 090001 (2014)

    Article  ADS  Google Scholar 

  19. U. Amaldi, W. de Boer, H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 260, 447 (1991)

  20. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, Higgs mass and vacuum stability in the standard model at NNLO. J. High Energy Phys. 1208, 098 (2012). hep-ph/1205.6497

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Colwell, K.M.M. (2017). Little Conformal Symmetry. In: Dualities, Helicity Amplitudes, and Little Conformal Symmetry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67392-9_5

Download citation

Publish with us

Policies and ethics