Skip to main content

New Trends in Solar Cells Research

  • Chapter
  • First Online:
Future Solar Energy Devices

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Solar cells converts the solar photons energy into electrical energy. The first solar cell was realized in 1954 at Bell Laboratories. The functioning principles of this first generation solar cells are based on a p-n homojunction realized in a bulk semiconductor (Silicon or GaAs). FigureĀ 3.1 depicts the charge carriersā€™ distribution and band diagram levels before and after junction formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Fahrenbruch, R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion ( Academic Press, London, 1983)

    Google ScholarĀ 

  2. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617ā€“1622 (2005)

    ArticleĀ  Google ScholarĀ 

  3. T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier, Amsterdam, 2006)

    Google ScholarĀ 

  4. https://www.nrel.gov/pv/assets/images/efficiency-chart.png, NREL, 2017

  5. F.C. Krebs et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration. Sol Energy Mater. Sol. Cells 93(4), 422ā€“441 (2009)

    ArticleĀ  Google ScholarĀ 

  6. https://infinitypv.com/

  7. CNRS Innovation letters No. 15, (18/04/2015 au 11/06/2015) communicate 10/06/2015

    Google ScholarĀ 

  8. B. Wang, L.L. Kerr, Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95(8), 2531ā€“2535 (2011)

    ArticleĀ  Google ScholarĀ 

  9. L. Leonat et al., 4% efficient polymer solar cells on paper substrates. J. Phys. Chem. C 118(30), 16813ā€“16817 (2014)

    ArticleĀ  Google ScholarĀ 

  10. H. Ɓguas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Thin film silicon photovoltaic cells on paper for flexible indoor applications. Adv. Funct. Mater. 25, 3592ā€“3598 (2015)

    ArticleĀ  Google ScholarĀ 

  11. D.B. Fraser, H.D. Cook, Highly conductive, transparent films of sputtered In2āˆ’x SnxO3āˆ’y. J. Electrochem. Soc. 119, 1368 (1972)

    ArticleĀ  Google ScholarĀ 

  12. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)

    ArticleĀ  Google ScholarĀ 

  13. M. Girtan, R. Mallet, D. Caillou, G.G. Rusu, M. Rusu, Thermal stability of poly(3,4-ethylenedioxythiophene)ā€“polystyrenesulfonic acid films electrical properties. Superlattices Microstruct. 46, 44ā€“51 (2009)

    ArticleĀ  Google ScholarĀ 

  14. M. Girtan, Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153ā€“161 (2012)

    ArticleĀ  Google ScholarĀ 

  15. P. Kubis et al., High precision processing of flexible P3HT/PCBM modules with geometric fill factor over 95%. Org. Electron. 15(10), 2256ā€“2263 (2014)

    ArticleĀ  Google ScholarĀ 

  16. S. Berny et al., Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 1500342 (2015)

    Google ScholarĀ 

  17. S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574ā€“578 (2010)

    ArticleĀ  Google ScholarĀ 

  18. Zhinke Liu, Jinhua Li, Feng Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296ā€“4301 (2013)

    ArticleĀ  Google ScholarĀ 

  19. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611ā€“622 (2010)

    ArticleĀ  Google ScholarĀ 

  20. M. Girtan, On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Org. Electron. 14(1), 200ā€“205 (2013)

    ArticleĀ  Google ScholarĀ 

  21. H.L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environemental Sci. 5, 5994 (2012)

    ArticleĀ  Google ScholarĀ 

  22. P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells. Prog. Photovoltaics Res. Appl. 20, 377ā€“415 (2012)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  23. M. Girtan, M. Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 94, 446ā€“450 (2010)

    ArticleĀ  Google ScholarĀ 

  24. M.C. Scharber, D. MĆ¼hlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cellsā€”towards 10% energy-conversion efficiency. Adv. Mater. 18, 789ā€“794 (2006)

    ArticleĀ  Google ScholarĀ 

  25. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205ā€“213 (2010)

    ArticleĀ  Google ScholarĀ 

  26. http://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/quantum-dots.html

  27. Louis Brus, J. Phys. Chem. 90(12), 2555ā€“2560 (1986)

    ArticleĀ  Google ScholarĀ 

  28. L.Y. Chang, R.R. Lunt, P.R. Brown, V. Bulovic, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS Colloidal Quantum Dot/CdS heterojunctions. Nano Lett. 13(3), 994ā€“999 (2013)

    ArticleĀ  Google ScholarĀ 

  29. A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014ā€“5017 (1997)

    ArticleĀ  Google ScholarĀ 

  30. I. Ramiro, A. Marti, E. Antolin, A. Luque, Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 4, 736ā€“748 (2014)

    ArticleĀ  Google ScholarĀ 

  31. C.Y. Yang, M.S. Qin, Y.M. Wang, D.Y. Wan, F.Q. Huang, J.H. Lin, Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. Sci. Rep. 3(1286), 1ā€“7 (2013)

    Google ScholarĀ 

  32. I. Ramiro, E. Antolin, J. Hwang, A. Teran, A.J. Martin, P.G. Linares, J. Millunchick, J. Phillips, A. Marti, A. Luque, Three-bandgap absolute quantum efficiency in GaSb/GaAs quantum dot intermediate band solar cells. IEEE J. Photovoltaics 7(2), 508ā€“512 (2017)

    ArticleĀ  Google ScholarĀ 

  33. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050ā€“6051 (2009)

    ArticleĀ  Google ScholarĀ 

  34. B. Dongqin et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016)

    Google ScholarĀ 

  35. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506ā€“514 (2014)

    ArticleĀ  Google ScholarĀ 

  36. H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623ā€“3630 (2013)

    ArticleĀ  Google ScholarĀ 

  37. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganicā€“organic hybrid nanostructured solar cells. Nano Lett. 13, 1764ā€“1769 (2013)

    Google ScholarĀ 

  38. H. Choi, C-K Mai, H-B Kim, J. Jeong, S. Song, G.C. Bazan, J.Y. Kim, A.J. Heeger, Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6(7348), 1ā€“6 (2015)

    Google ScholarĀ 

  39. J.P. Mailoa et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(121105), 1ā€“4 (2015)

    Google ScholarĀ 

  40. T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117ā€“4122 (2002)

    ArticleĀ  Google ScholarĀ 

  41. T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668ā€“1674 (2002)

    ArticleĀ  Google ScholarĀ 

  42. J. Merigeon et al., Studies on Pr3+ā€“Yb3+ co-doped ZBLA as rare earth down convertor glasses for solar cells encapsulation. Opt. Mater. 48, 243ā€“246 (2015)

    ArticleĀ  Google ScholarĀ 

  43. O. Maalej, J. Merigeon, B. Boulard, M. Girtan, Visible to near-infrared down-shifting in Tm3+ doped fluoride glasses for solar cells efficiency enhancement. Opt. Mater. 60, 235ā€“239 (2016)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Girtan .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 The Author(s)

About this chapter

Cite this chapter

Girtan, M. (2018). New Trends in Solar Cells Research. In: Future Solar Energy Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67337-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67337-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67336-3

  • Online ISBN: 978-3-319-67337-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics