Skip to main content

Bridging the Gap Between Policy and Action in Residential Graywater Recycling

  • Chapter
  • First Online:
Handbook of Sustainability and Social Science Research

Part of the book series: World Sustainability Series ((WSUSE))

Abstract

This study explores the social dimensions of local climate adaptive policies through an Arizona policy, the 2010 Residential Gray Water Ordinance (RGWO). An ecological model of behavior is used as a framework for analyzing the complex relationship between sustainably focused policy initiatives and their success or failure at the individual level. Water cycle fluctuation will be significantly impacted by global climate change in upcoming decades and additional demand for potable water will increase due to growing urban populations. The reuse of residential gray water is an underutilized option for reducing potable water use, municipal energy use, and greenhouse gas emissions, with seemingly little negative impact on public health. The RGWO is a policy passed in Tucson, Arizona, requiring new single family and duplex housing be built with separate graywater plumbing to enable graywater recycling for irrigation. Local adaptations of such policies often depend on a variety of unforeseen factors and few studies have considered the role architects, activists, builders, and citizens play in the success of local climate adaptive initiatives. Data from in-depth guided interviews was used to develop insight into how different stakeholders can impact policy implementation. Eight participants were interviewed through a snowball sampling of local graywater installation professionals, educators, activists and researchers. Data from interviews was transcribed, coded, analyzed for themes presented within an ecological framework. The aim of this paper is to offer new perspectives on integrating sustainably focused policies by evaluating social and political barriers encountered at multiple levels through an ecological model: individual, interpersonal, organizational, community and policy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bronfenbrenner, U., & Evans, G. W. (2000). Developmental science in the 21st century: Emerging questions, theoretical models, research designs and empirical findings. Social development, 9(1), 115–125.

    Google Scholar 

  • Bronfenbrenner, U., Morris, P. A. (2007). The bioecological model of human development. Handbook of Child Psychology 1(14), 793–828.

    Google Scholar 

  • Cerra, J. (2017). Emerging strategies for voluntary urban ecological stewardship on private property. Landscape and Urban Planning, 157, 586–597.

    Article  Google Scholar 

  • City of Tucson. (2010). Residential Gray Water Ordinance 10579. Retrieved from: https://www.tucsonaz.gov/files/agdocs/20080923/sept23-08-527a.pdf.

  • City of Tucson. (2011). Reclaimed Water Basics: For Residential Customers. Retrieved from: https://www.tucsonaz.gov/files/water/docs/rw-basics_res_print-2011.pdf

  • Congressional Budget Office. (2002). Future investment in drinking water and wastewater infrastructure. The Congress of the United States. Retrieved from: https://www.cbo.gov/sites/default/files/cbofiles/ftpdocs/39xx/doc3983/11-18-watersystems.pdf.

  • Cupp, J, Nichols, A. (2011). Residential graywater information guide. The City of Tucson, Arizona. Retrieved from: https://www.tucsonaz.gov/files/water/docs/GrayW_Info_Guide_6-11.pdf.

  • Daughton, C. G. (2003). Pharmaceuticals and personal care products (PPCP’s) as environmental pollutants: Pollution from personal actions. Presented at U.S. EPA Region 5’s Regional EPA-Tribal Environmental Conference (RETEC), Chicago, IL, March 4–6, 2003. https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=66501. Accessed Sept 2016.

  • DeOreo, W. B., Mayer, P. W., Dziegielewski, B., & Kiefer, J. (2016). Residential end uses of water, version 2. Water Research Foundation.

    Google Scholar 

  • Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Hawthorne: Aldine de Gruyter.

    Google Scholar 

  • Holway, J. (2009). Adaptive water quantity management: Designing for sustainability and resiliency in water scarce regions. In L. A. Baker (Ed.), The water environment of cities. New York: Springer Science and Business Media.

    Google Scholar 

  • Lancaster, B. (2006). Rainwater harvesting for drylands (Vol. 1). Arizona, USA: Rainsource Press.

    Google Scholar 

  • Little, V. L. (2000). Residential Graywater Reuse: The Good, the Bad, the Healthy in Pima County, Arizona: A Survey of Current Residential Graywater Reuse. Water Resources Research Center.

    Google Scholar 

  • Ludwig, A. (2006). Create an oasis with graywater: Choosing, building, and using graywater systems includes branched drains fifth edition.

    Google Scholar 

  • Makropoulos, C., & Butler, D. (2010). Distributed water infrastructure for sustainable communities. Water Resource Management, 24, 2795–2816.

    Article  Google Scholar 

  • McLeroy, K., Bibeau, D., Steckler, A., & Glanz, K. (1988). An ecological perspective on health promotion programs. Health Education Quarterly, 15, 4.

    Article  Google Scholar 

  • Mehta, M. (2009). Water efficiency saves energy: Reducing global warming pollution through water use strategies. Natural Resources Defense Council. Accessed September 28, 2016. Retrieved from: https://www.nrdc.org/sites/default/files/energywater.pdf.

  • Moskell, C., & Broussard, S. (2013). Integrating human and natural systems in community psychology: An ecological model of stewardship behavior. American Journal of Community Psychology, 51, 1–14. http://doi.org/10.1007/s10464-012-9532-8.

  • National Academies of Sciences, Engineering, and Medicine. (2016). Using graywater and stormwater to enhance local water supplies: An assessment of risks, costs, and benefits. Washington, DC: The National Academies Press. doi:10.17226/21866.

    Google Scholar 

  • Rosner, L., Qian, Y., Stromberger, M., & Klein, S. (2006). Long-term effects of landscape irrigation using household graywater: Literature review and synthesis. Water Environment Research Foundation and the Soap and Detergent Association. Retrieved from: http://www.aciscience.org/docs/SDA-WERF%20Graywater%20Lit%20Review.pdf.

  • Schensul, J. J., & Trickett, E. (2009). Introduction to multi-level community based culturally situated interventions. American Journal of Community Psychology, 43(3–4), 232–240. doi:http://dx.doi.org/10.1007/s10464-009-9238-8.

  • Sharevelle, S., Roesner, L., Qian, Y. Stromberger, M. Azar, M. N. (2012). Long-term study on landscape irrigation using household graywater–Experimental study. The Urban Water Center Colorado State University. WERF: Water Environment Research Foundation.

    Google Scholar 

  • Sokolow, S., Godwin, H., & Cole, B. (2016). Impacts of urban water conservation strategies on energy, greenhouse gas emissions and health: Southern California as a case study.

    Google Scholar 

  • Stokols, D. Grzywacz, J. McMahan, S., & Kimari, P. (2003). Increasing the health promotive capacity of human environments. American Journal of Health Promotion. Retrieved from: http://www.activelivingresearch.com/files/AJHP_4_Stokols_0.pdf Accessed on September 20, 2016.

  • Tufvesson, A. (2009). Graywater Treatment and Technology. Retrieved from: http://www.worldplumbinginfo.com/greywater-treatment-and-technology.

  • Urwin, K., & Jordan, A. (2008). Does public policy support or undermine climate change adaptation? Exploring policy interplay across different scales of governance. Global Environmental Change, 18(1), 180–191.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency. (2008). Energy efficiency in water and wastewater facilities: A guide to developing and implementing greenhouse gas reduction programs. Retrieved from: https://www3.epa.gov/region9/waterinfrastructure/.

  • U.S. Environmental Protection Agency. (2016). A closer look: Temperature and drought in the southwest: Climate change indicators. Retrieved from: https://www.epa.gov/climate-indicators/southwest. Accessed on September 5, 2016.

  • Yu, Z., Rahardianto, A., DeShazo, J. R., Stenstrom, M., & Cohen, Y. (2013). Critical review: Regulatory incentives and impediments for onsite graywater reuse in the United States. Water Environment Research, 85, 7.

    Google Scholar 

  • Young, O. R. (2002). Institutional interplay: the environmental consequences of cross-scale interactions. The drama of the commons, 263–291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bell, L. (2018). Bridging the Gap Between Policy and Action in Residential Graywater Recycling. In: Leal Filho, W., Marans, R., Callewaert, J. (eds) Handbook of Sustainability and Social Science Research. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-319-67122-2_9

Download citation

Publish with us

Policies and ethics