Skip to main content
  • 1178 Accesses

Abstract

Ventricular–ventricular interactions refer to the cumulative effect of changes in filling, function, geometry and synchrony of one ventricle on the filling, function, geometry and synchrony of the contra-lateral ventricle. A substantial portion of RV mechanical work under normal circumstances is generated by LV contraction. However, the RV also profoundly influences LV function. These RV to LV and LV to RV interactions, are particularly prominent during increased volume and pressure loading, and affect disease course and outcome. These ventricular–ventricular interactions may also be recruited and targeted for therapeutic benefit. For example, controlled pulmonary artery banding in dilated cardiomyopathy and aortic banding in pulmonary hypertension may augment the function of the failing left and right ventricle respectively. Even in single ventricle physiology, the hypoplastic ventricle can affect the function of the dominant ventricle. In this chapter we review the physiology, pathophysiology and therapeutic benefit of ventricular–ventricular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sanchez-Quintana D, Anderson RH, Ho SY. Ventricular myoarchitecture in tetralogy of Fallot. Heart. 1996;76(3):280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santamore WP, et al. Left ventricular effects on right ventricular developed pressure. J Appl Physiol. 1976;41(6):925–30.

    CAS  PubMed  Google Scholar 

  3. Hoffman D, et al. Left-to-right ventricular interaction with a noncontracting right ventricle. J Thorac Cardiovasc Surg. 1994;107(6):1496–502.

    CAS  PubMed  Google Scholar 

  4. Schertz C, Pinsky MR. Effect of the pericardium on systolic ventricular interdependence in the dog. J Crit Care. 1993;8(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  5. Damiano RJ Jr, et al. Significant left ventricular contribution to right ventricular systolic function. Am J Phys. 1991;261(5 Pt 2):H1514–24.

    Google Scholar 

  6. Feneley MP, et al. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation. 1985;71(3):473–80.

    Article  CAS  PubMed  Google Scholar 

  7. Taylor RR, et al. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Phys. 1967;213(3):711–8.

    CAS  Google Scholar 

  8. Danton MH, et al. Modified Glenn connection for acutely ischemic right ventricular failure reverses secondary left ventricular dysfunction. J Thorac Cardiovasc Surg. 2001;122(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  9. Brookes C, et al. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100(7):761–7.

    Article  CAS  PubMed  Google Scholar 

  10. Moulopoulos SD, et al. Left ventricular performance during by-pass or distension of the right ventricle. Circ Res. 1965;17(6):484–91.

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez-Quintana D, et al. Myoarchitecture and connective tissue in hearts with tricuspid atresia. Heart. 1999;81(2):182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smerup M, et al. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat Rec (Hoboken). 2009;292(1):1–11.

    Article  Google Scholar 

  13. Belenkie I, et al. Effects of aortic constriction during experimental acute right ventricular pressure loading. Further insights into diastolic and systolic ventricular interaction. Circulation. 1995;92(3):546–54.

    Article  CAS  PubMed  Google Scholar 

  14. Gurudevan SV, et al. Abnormal left ventricular diastolic filling in chronic thromboembolic pulmonary hypertension: true diastolic dysfunction or left ventricular underfilling? J Am Coll Cardiol. 2007;49(12):1334–9.

    Article  PubMed  Google Scholar 

  15. Gan CT, et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2006;290(4):H1528–33.

    CAS  PubMed  Google Scholar 

  16. Marcus JT, et al. Impaired left ventricular filling due to right ventricular pressure overload in primary pulmonary hypertension: noninvasive monitoring using MRI. Chest. 2001;119(6):1761–5.

    Article  CAS  PubMed  Google Scholar 

  17. Nelson GS, et al. Compression of interventricular septum during right ventricular pressure loading. Am J Physiol Heart Circ Physiol. 2001;280(6):H2639–48.

    CAS  PubMed  Google Scholar 

  18. Roeleveld RJ, et al. Interventricular septal configuration at mr imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005;234(3):710–7.

    Article  PubMed  Google Scholar 

  19. Visner MC, et al. Alterations in left ventricular three-dimensional dynamic geometry and systolic function during acute right ventricular hypertension in the conscious dog. Circulation. 1983;67(2):353–65.

    Article  CAS  PubMed  Google Scholar 

  20. Raymond RJ, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39(7):1214–9.

    Article  PubMed  Google Scholar 

  21. Ryan T, et al. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5(4):918–27.

    Article  CAS  PubMed  Google Scholar 

  22. Kassem E, Humpl T, Friedberg MK. Prognostic significance of 2-dimensional, M-mode, and Doppler echo indices of right ventricular function in children with pulmonary arterial hypertension. Am Heart J. 2013;165(6):1024–31.

    Article  PubMed  Google Scholar 

  23. Lurz P, et al. Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur Heart J. 2009;30(18):2266–74.

    Article  PubMed  Google Scholar 

  24. McCann GP, et al. Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol. 2007;188(2):349–55.

    Article  PubMed  Google Scholar 

  25. Beyar R, et al. Ventricular interaction and septal deformation: a model compared with experimental data. Am J Phys. 1993;265(6 Pt 2):H2044–56.

    CAS  Google Scholar 

  26. Sanz J, et al. Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol. 2007;100(4):731–5.

    Article  PubMed  Google Scholar 

  27. Shehata ML, et al. Myocardial delayed enhancement in pulmonary hypertension: pulmonary hemodynamics, right ventricular function, and remodeling. AJR Am J Roentgenol. 2011;196(1):87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Duffels MG, et al. Duration of right ventricular contraction predicts the efficacy of bosentan treatment in patients with pulmonary hypertension. Eur J Echocardiogr. 2009;10(3):433–8.

    Article  PubMed  Google Scholar 

  29. Alkon J, et al. Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension. Am J Cardiol. 2010;106(3):430–6.

    Article  PubMed  Google Scholar 

  30. Mahmud E, et al. Correlation of left ventricular diastolic filling characteristics with right ventricular overload and pulmonary artery pressure in chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol. 2002;40(2):318–24.

    Article  PubMed  Google Scholar 

  31. Marcus JT, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51(7):750–7.

    Article  PubMed  Google Scholar 

  32. D’Andrea A, et al. Right ventricular myocardial activation delay in adult patients with right bundle branch block late after repair of Tetralogy of Fallot. Eur J Echocardiogr. 2004;5(2):123–31.

    Article  PubMed  Google Scholar 

  33. Davlouros PA, et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol. 2002;40(11):2044–52.

    Article  PubMed  Google Scholar 

  34. Kempny A, et al. Right ventricular-left ventricular interaction in adults with Tetralogy of Fallot: A combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int J Cardiol. 2012;154(3):259–64.

    Article  PubMed  Google Scholar 

  35. Weidemann F, et al. Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes after surgical repair of tetralogy of Fallot. Am J Cardiol. 2002;90(2):133–8.

    Article  PubMed  Google Scholar 

  36. Friedberg MK, et al. Impaired right and left ventricular diastolic myocardial mechanics and filling in asymptomatic children and adolescents after repair of tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2012;13(11):905–13.

    Article  PubMed  Google Scholar 

  37. Dragulescu A, et al. Effect of chronic right ventricular volume overload on ventricular interaction in patients after tetralogy of fallot repair. J Am Soc Echocardiogr. 2014;27(8):896–902.

    Article  PubMed  Google Scholar 

  38. Frigiola A, et al. Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: is age a predictor of outcome? Circulation. 2008;118(14 Suppl):S182–90.

    Article  PubMed  Google Scholar 

  39. Tobler D, et al. The left heart after pulmonary valve replacement in adults late after tetralogy of Fallot repair. Int J Cardiol. 2012;160(3):165–70.

    Article  PubMed  Google Scholar 

  40. Ghai A, et al. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol. 2002;40(9):1675–80.

    Article  PubMed  Google Scholar 

  41. Roche SL, et al. Exercise induces biventricular mechanical dyssynchrony in children with repaired tetralogy of Fallot. Heart. 2010;96(24):2010–5.

    Article  PubMed  Google Scholar 

  42. Thenappan T, Gomberg-Maitland M. Epidemiology of pulmonary hypertension and right ventricular failure in left heart failure. Curr Heart Fail Rep. 2014;11(4):428–35.

    Article  PubMed  Google Scholar 

  43. Gulati A, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation. 2013;128(15):1623–33.

    Article  PubMed  Google Scholar 

  44. Friedberg MK, Wu S, Slorach C. Left-Right ventricular interactions in pediatric aortic stenosis: right ventricular myocardial strain before and after aortic valvuloplasty. J Am Soc Echocardiogr. 2013;26(4):390–7.

    Article  PubMed  Google Scholar 

  45. Li SJ, et al. Right and left ventricular mechanics and interaction late after balloon valvoplasty for pulmonary stenosis. Eur Heart J Cardiovasc Imaging. 2014;15(9):1020–8.

    Article  PubMed  Google Scholar 

  46. Akagi T, et al. Ventriculo-coronary arterial connections in pulmonary atresia with intact ventricular septum, and their influences on ventricular performance and clinical course. Am J Cardiol. 1993;72(7):586–90.

    Article  CAS  PubMed  Google Scholar 

  47. Gentles TL, et al. Right ventricular decompression and left ventricular function in pulmonary atresia with intact ventricular septum. The influence of less extensive coronary anomalies. Circulation. 1993;88(5 Pt 2):II183–8.

    CAS  PubMed  Google Scholar 

  48. Apitz C, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60(1):17–23.

    Article  PubMed  Google Scholar 

  49. Apitz C, et al. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144(6):1494–501.

    Article  PubMed  Google Scholar 

  50. Friedberg MK, et al. Adverse biventricular remodeling in isolated right ventricular hypertension is mediated by increased transforming growth factor-beta1 signaling and is abrogated by angiotensin receptor blockade. Am J Respir Cell Mol Biol. 2013;49(6):1019–28.

    Article  CAS  PubMed  Google Scholar 

  51. Kitahori K, et al. Development of left ventricular diastolic dysfunction with preservation of ejection fraction during progression of infant right ventricular hypertrophy. Circ Heart Fail. 2009;2(6):599–607.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Manders E, et al. Contractile dysfunction of left ventricular cardiomyocytes in patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2014;64(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  53. Prieto LR, et al. Progressive tricuspid valve disease in patients with congenitally corrected transposition of the great arteries. Circulation. 1998;98(10):997–1005.

    Article  CAS  PubMed  Google Scholar 

  54. Schranz D, et al. Pulmonary artery banding for idiopathic dilative cardiomyopathy: a novel therapeutic strategy using an old surgical procedure. J Thorac Cardiovasc Surg. 2007;134(3):796–7.

    Article  PubMed  Google Scholar 

  55. Schranz D, et al. Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant. 2013;32(5):475–81.

    Article  PubMed  Google Scholar 

  56. Fogel MA, et al. A study in ventricular-ventricular interaction. Single right ventricles compared with systemic right ventricles in a dual-chamber circulation. Circulation. 1995;92(2):219–30.

    Article  CAS  PubMed  Google Scholar 

  57. Takahashi K, et al. Real-time 3-dimensional echocardiography provides new insight into mechanisms of tricuspid valve regurgitation in patients with hypoplastic left heart syndrome. Circulation. 2009;120(12):1091–8.

    Article  CAS  PubMed  Google Scholar 

  58. Bharucha T, et al. Right ventricular mechanical dyssynchrony and asymmetric contraction in hypoplastic heart syndrome are associated with tricuspid regurgitation. J Am Soc Echocardiogr. 2013;26(10):1214–20.

    Article  PubMed  Google Scholar 

  59. Walsh MA, et al. Left ventricular morphology influences mortality after the Norwood operation. Heart. 2009;95(15):1238–44.

    Article  CAS  PubMed  Google Scholar 

  60. Wisler J, Khoury PR, Kimball TR. The effect of left ventricular size on right ventricular hemodynamics in pediatric survivors with hypoplastic left heart syndrome. J Am Soc Echocardiogr. 2008;21(5):464–9.

    Article  PubMed  Google Scholar 

  61. Kutty S, et al. Tricuspid regurgitation in hypoplastic left heart syndrome: mechanistic insights from 3-dimensional echocardiography and relationship with outcomes. Circ Cardiovasc Imaging. 2014;7(5):765–72.

    Article  PubMed  Google Scholar 

  62. Bharucha T, et al. Mechanisms of tricuspid valve regurgitation in hypoplastic left heart syndrome: a case-matched echocardiographic-surgical comparison study. Eur Heart J Cardiovasc Imaging. 2013;14(2):135–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K. Friedberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Friedberg, M.K. (2018). Right–Left Ventricular Interactions in RV Afterload and Preload. In: Friedberg, M., Redington, A. (eds) Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-67096-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67096-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67094-2

  • Online ISBN: 978-3-319-67096-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics