Skip to main content

Abstract

Right ventricular dysfunction is prevalent following orthotopic heart transplantation. The sequential insults of donor brain death, cardioplegia, ischemia, reperfusion injury and cardiopulmonary bypass interact together with raised recipient pulmonary vascular resistance to produce this common complication. Early recognition is important because the principles of management, which hinge on avoiding volume overload, inappropriate inotropic support, and the maintenance of adequate blood pressure to maintain coronary perfusion, differ substantially from other forms of acute heart failure. With improved management, and in particular, the availability of selective pulmonary vasodilators and advances in mechanical circulatory support, the prognosis has improved considerably within the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Griepp RB, Stinson EB, Clark DA, Shumway NEA. Two-year experience with human heart transplantation. Calif Med. 1970;113(2):17.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Costard-Jäckle A, Fowler MB. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol. 1992;19(1):48–54.

    Article  PubMed  Google Scholar 

  3. Cosío Carmena DG, Bueno MG, Almenar L, Delgado JF, Arizón JM, Vilchez FG, et al. Primary graft failure after heart transplantation: characteristics in a contemporary cohort and performance of the RADIAL risk score. J Heart Lung Transplant. 2013;32(12):1187–95.

    Article  PubMed  Google Scholar 

  4. Kanter KR, Tam VK, Vincent RN, Cuadrado AR, Raviele AA, Berg AM. Current results with pediatric heart transplantation. Ann Thorac Surg. 1999;68(2):527–30.

    Article  CAS  PubMed  Google Scholar 

  5. Hehrlein FW, Netz H, Moosdorf R, Dapper F, Scheld HH, Bauer J, et al. Pediatric heart transplantation for congenital heart disease and cardiomyopathy. Ann Thorac Surg. 1991;52(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  6. Mavroudis C, Harrison H, Klein JB, Gray LA, Ganzel BL, Wellhausen SR, et al. Infant orthotopic cardiac transplantation. J Thorac Cardiovasc Surg. 1988;96(6):912–24.

    CAS  PubMed  Google Scholar 

  7. Bailey LL, Wood M, Razzouk A, Van Arsdell G, Gundry S. Heart transplantation during the first 12 years of life. Arch Surg. 1989;124(10):1221–6.

    Article  CAS  PubMed  Google Scholar 

  8. Starnes VA, Oyer PE, Bernstein D, Baum D, Gamberg P, Miller J, et al. Heart, heart-lung, and lung transplantation in the first year of life. Ann Thorac Surg. 1992;53(2):306–10.

    Article  CAS  PubMed  Google Scholar 

  9. Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014;33(4):327–40.

    Article  PubMed  Google Scholar 

  10. Graham TP, Bernard YD, Mellen BG, Celermajer D, Baumgartner H, Cetta F, et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36(1):255–61.

    Article  PubMed  Google Scholar 

  11. Lange PE, Nürnberg JH, Sievers HH, Onnasch DGW, Bernhard A, Heintzen PH. Response of the right ventricle to progressive pressure loading in pigs. Basic Res Cardiol. 1985 Jul 1;80(4):436–44.

    Article  CAS  PubMed  Google Scholar 

  12. Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res. 1954 Jul 1;2(4):326–32.

    Article  CAS  PubMed  Google Scholar 

  13. Brooks H, Kirk ES, Vokonas PS, Urschel CW, Sonnenblick EH. Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest. 1971;50(10):2176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hon JK, Steendijk P, Khan H, Wong K, Yacoub M. Acute effects of pulmonary artery banding in sheep on right ventricle pressure-volume relations: relevance to the arterial switch operation. Acta Physiol Scand. 2001;172(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  15. Karunanithi MK, Michniewicz J, Copeland SE, Feneley MP. Right ventricular preload recruitable stroke work, end-systolic pressure-volume, and dP/dtmax-end-diastolic volume relations compared as indexes of right ventricular contractile performance in conscious dogs. Circ Res. 1992;70(6):1169–79.

    Article  CAS  PubMed  Google Scholar 

  16. De Vroomen M, Cardozo RH, Steendijk P, van Bel F, Baan J. Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. Am J Physiol Heart Circ Physiol. 2000;278(1):H100–5.

    PubMed  Google Scholar 

  17. Szabó G, Sebening C, Hagl C, Tochtermann U, Vahl CF, Hagl S. Right ventricular function after brain death: response to an increased afterload. Eur J Cardiothorac Surg. 1998;13(4):449–58.

    Article  PubMed  Google Scholar 

  18. Spotnitz HM, Berman MA, Epstein SE. Pathophysiology and experimental treatment of acute pulmonary embolism. Am Heart J. 1971;82(4):511–20.

    Article  CAS  PubMed  Google Scholar 

  19. Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  20. Gold FL, Bache RJ. Transmural right ventricular blood flow during acute pulmonary artery hypertension in the sedated dog. Evidence for subendocardial ischemia despite residual vasodilator reserve. Circ Res. 1982;51(2):196–204.

    Article  CAS  PubMed  Google Scholar 

  21. Schmitto JD, Doerge H, Post H, Coulibaly M, Sellin C, Popov AF, et al. Progressive right ventricular failure is not explained by myocardial ischemia in a pig model of right ventricular pressure overload. Eur J Cardiothorac Surg. 2009 Feb 1;35(2):229–34.

    Article  PubMed  Google Scholar 

  22. Greyson C, Xu Y, Cohen J, Schwartz GG. Right ventricular dysfunction persists following brief right ventricular pressure overload. Cardiovasc Res. 1997 May 1;34(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz GG, Steinman S, Garcia J, Greyson C, Massie B, Weiner MW. Energetics of acute pressure overload of the porcine right ventricle. In vivo 31P nuclear magnetic resonance. J Clin Invest. 1992;89(3):909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Apitz C, Honjo O, Friedberg M, Assad R, Van Arsdell G, Humpl T, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a Rabbit model. Thorac Cardiovasc Surg. 2012;60(01):017–23.

    Article  Google Scholar 

  25. Apitz C, Honjo O, Humpl T, Li J, Assad RS, Cho MY, et al. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144(6):1494–501.

    Article  PubMed  Google Scholar 

  26. Belenkie I, Horne SG, Dani R, Smith ER, Tyberg JV. Effects of aortic constriction during experimental acute right ventricular pressure loading further insights into diastolic and systolic ventricular interaction. Circulation. 1995 Aug 1;92(3):546–54.

    Article  CAS  PubMed  Google Scholar 

  27. Greyson C, Xu Y, Lu L, Schwartz GG. Right ventricular pressure and dilation during pressure overload determine dysfunction after pressure overload. Am J Physiol—Heart Circ Physiol. 2000 May 1;278(5):H1414–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Greyson CR, Schwartz GG, Lu L, Ye S, Helmke S, Xu Y, et al. Calpain inhibition attenuates right ventricular contractile dysfunction after acute pressure overload. J Mol Cell Cardiol. 2008;44(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  29. Ahmad HA, Lu L, Ye S, Schwartz GG, Greyson CR. Calpain inhibition preserves talin and attenuates right heart failure in acute pulmonary hypertension. Am J Respir Cell Mol Biol. 2012;47(3):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Novitzky D, Wicomb WN, Cooper DKC, Rose AG, Fraser RC, Barnard CN. Electrocardiographic, haemodynamic and endocrine changes occuring during experimental brain death in the Chacma baboon. J Heart Transplant. 1984;4(1):63–9.

    Google Scholar 

  31. Cushing H. Some experimental and clinical observations concerning states of increased intracranial tension. Am J Med Sci. 1902;124(3):375–400.

    Article  Google Scholar 

  32. Bittner HB, Kendall SW, Campbell KA, Montine TJ, Van Trigt PA. valid experimental brain death organ donor model. J Heart Lung Transplant. 1995;14(2):308–17.

    CAS  PubMed  Google Scholar 

  33. Shivalkar B, Van Loon J, Wieland W, Tjandra-Maga TB, Borgers M, Plets C, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation. 1993;87(1):230–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mertes PM, el Abassi K, Jaboin Y, Burtin P, Pinelli G, Carteaux JP, et al. Changes in hemodynamic and metabolic parameters following induced brain death in the pig. Transplantation. 1994;58(4):414–8.

    Article  CAS  PubMed  Google Scholar 

  35. Pinelli G, Mertes PM, Carteaux JP, Jaboin Y, Escanye JM, Brunotte F, et al. Myocardial effects of experimental acute brain death: evaluation by hemodynamic and biological studies. Ann Thorac Surg. 1995;60(6):1729–34.

    Article  CAS  PubMed  Google Scholar 

  36. Bruinsma GJ, Nederhoff MG, Geertman HJ, van Huffelen AC, Slootweg PJ, Ferrari R, et al. Acute increase of myocardial workload, hemodynamic instability, and myocardial histological changes induced by brain death in the cat. J Surg Res. 1997 Feb 15;68(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  37. Shanlin RJ, Sole MJ, Rahimifar M, Tator CH, Factor SM. Increased intracranial pressure elicits hypertension, increased sympathetic activity, electrocardiographic abnormalities and myocardial damage in rats. J Am Coll Cardiol. 1988;12(3):727–36.

    Article  CAS  PubMed  Google Scholar 

  38. Galiñanes M, Hearse DJ. Brain-death-induced cardiac contractile dysfunction: studies of possible neurohormonal and blood-borne mediators. J Mol Cell Cardiol. 1994;26(4):481–98.

    Article  PubMed  Google Scholar 

  39. Mertes PM, Carteaux JP, Jaboin Y, Pinelli G, el Abassi K, Dopff C, et al. Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation. 1994;57(3):371–7.

    Article  CAS  PubMed  Google Scholar 

  40. Sebening C, Hagl C, Szabo G, Tochtermann U, Strobel G, Schnabel P, et al. Cardiocirculatory effects of acutely increased intracranial pressure and subsequent brain death. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 1995;9(7):360–72.

    Article  CAS  Google Scholar 

  41. Novitzky D. Detrimental effects of brain death on the potential organ donor. Transplant Proc. 1997;29(8):3770–2.

    Article  CAS  PubMed  Google Scholar 

  42. Dujardin KS, McCully RB, Wijdicks EFM, Tazelaar HD, Seward JB, McGregor CGA, et al. Myocardial dysfunction associated with brain death: clinical, echocardiographic, and pathologic features. J Heart Lung Transplant. 2001 Mar 1;20(3):350–7.

    Article  CAS  PubMed  Google Scholar 

  43. Kolin A, Norris JW. Myocardial damage from acute cerebral lesions. Stroke. 1984 Nov 1;15(6):990–3.

    Article  CAS  PubMed  Google Scholar 

  44. Todd GL, Baroldi G, Pieper GM, Clayton FC, Eliot RS. Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesions. J Mol Cell Cardiol. 1985;17(4):317–38.

    Article  CAS  PubMed  Google Scholar 

  45. Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985;17(4):291–306.

    Article  CAS  PubMed  Google Scholar 

  46. Van Trigt P, Bittner HB, Kendall SW, Milano CA. Mechanisms of transplant right ventricular dysfunction. Ann Surg. 1995;221(6):666–76.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bittner HB, Chen EP, Craig D, Van Trigt P. Preload-recruitable stroke work relationships and diastolic dysfunction in the brain-dead organ donor. Circulation. 1996 Nov 1;94(9 Suppl):II320–5.

    CAS  PubMed  Google Scholar 

  48. Kendall SW, Bittner HB, Peterseim DS, Campbell KA, Van Trigt P. Right ventricular function in the donor heart. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 1997;11(4):609–15.

    Article  CAS  Google Scholar 

  49. Pandalai PK, Lyons JM, Duffy JY, McLean KM, Wagner CJ, Merrill WH, et al. Role of the beta-adrenergic receptor kinase in myocardial dysfunction after brain death. J Thorac Cardiovasc Surg. 2005;130(4):1183–9.

    Article  CAS  PubMed  Google Scholar 

  50. Stoica SC, Satchithananda DK, White PA,Parameshwar J, Redington AN, Large SR. Noradrenaline use in the human donor and relationship with load-independent right ventricular contractility. Transplantation. 2004 Oct 27;78(8):1193–7.

    Article  CAS  PubMed  Google Scholar 

  51. Zaroff JG, Babcock WD, Shiboski SC, Solinger LL, Rosengard BR. Temporal changes in left ventricular systolic function in heart donors: results of serial echocardiography. J Heart Lung Transplant. 2003;22(4):383–8.

    Article  PubMed  Google Scholar 

  52. Casartelli M, Bombardini T, Simion D, Gaspari MG, Procaccio F. Wait, treat and see: echocardiographic monitoring of brain-dead potential donors with stunned heart. Cardiovasc Ultrasound. 2012;10:25.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pilati CF, Bosso FJ, Maron MB. Factors involved in left ventricular dysfunction after massive sympathetic activation. Am J Phys. 1992;263(3 Pt 2):H784–91.

    CAS  Google Scholar 

  54. Novitzky D, Wicomb WN, Cooper DKC, Rose a G, Reichart B. Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma Baboon. Ann Thorac Surg. 1986;41(5):520–4.

    Article  CAS  PubMed  Google Scholar 

  55. Novitzky D, Rose AG, Cooper DK. Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation. 1988;45(5):964–6.

    Article  CAS  PubMed  Google Scholar 

  56. D’Amico TA, Meyers CH, Koutlas TC, Peterseim DS, Sabiston DC, Van Trigt P, et al. Desensitization of myocardial beta-adrenergic receptors and deterioration of left ventricular function after brain death. J Thorac Cardiovasc Surg. 1995;110(3):746–51.

    Article  PubMed  Google Scholar 

  57. White M, Wiechmann RJ, Roden RL, Hagan MB, Wollmering MM, Port JD, et al. Cardiac β-adrenergic neuroeffector systems in acute myocardial dysfunction related to brain injury evidence for catecholamine-mediated myocardial damage. Circulation. 1995 Oct 15;92(8):2183–9.

    Article  CAS  PubMed  Google Scholar 

  58. Owen VJ, Burton PBJ, Michel MC, Zolk O, Bohm M, Pepper JR, et al. Myocardial dysfunction in donor hearts: a possible etiology. Circulation. 1999;99(19):2565–70.

    Article  CAS  PubMed  Google Scholar 

  59. Seguin C, Devaux Y, Aubert N, Siaghy EM, Zannad F, Burlet C, et al. Consequences of labetalol administration on myocardial beta adrenergic receptors in the brain dead pig. Ann Transplant Q Pol Transplant Soc. 2000;5(4):54–60.

    CAS  Google Scholar 

  60. McLean KM, Pandalai PK, Pearl JM, Bulcao CF, Lyons JM, Wagner CJ, et al. Beta-adrenergic receptor antagonism preserves myocardial function after brain death in a porcine model. J Heart Lung Transplant. 2007;26(5):522–8.

    Article  PubMed  Google Scholar 

  61. Bittner HB, Chen EP, Milano CA, Kendall SWH, Jennings RB, Sabiston DC, et al. Myocardial β-adrenergic receptor function and high-energy phosphates in brain death—related cardiac dysfunction. Circulation. 1995 Nov 1;92(9):472–8.

    Article  CAS  Google Scholar 

  62. Liaudet L, Calderari B, Pacher P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail Rev. 2014 Jan 8;19:1–10.

    Article  CAS  Google Scholar 

  63. Novitzky D, Cooper DK, Rose AG, Reichart B. Prevention of myocardial injury by pretreatment with verapamil hydrochloride prior to experimental brain death: efficacy in a baboon model. Am J Emerg Med. 1987;5(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  64. Novitzky D, Cooper DK, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy. Transplantation. 1988;45(1):32–6.

    Article  CAS  PubMed  Google Scholar 

  65. Herijgers P, Leunens V, Tjandra-Maga TB, Mubagwa K, Flameng W. Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines. Transplantation. 1996 Aug 15;62(3):330–5.

    Article  CAS  PubMed  Google Scholar 

  66. Bruinsma GJ, Nederhoff MGJ, van de Kolk CWA, de Groot MCH, Slootweg PJ, Bredée JJ, et al. Bio-energetic response of the heart to dopamine following brain death–related reduced myocardial workload: a phosphorus-31 magnetic resonance spectroscopy study in the cat. J Heart Lung Transplant. 1999;18(12):1189–97.

    Article  CAS  PubMed  Google Scholar 

  67. Szabó G, Hackert T, Sebening C, Vahl CF, Hagl S. Modulation of coronary perfusion pressure can reverse cardiac dysfunction after brain death. Ann Thorac Surg. 1999;67(1):18–25. discussion 25–6

    Article  PubMed  Google Scholar 

  68. Skrabal CA, Thompson LO, Potapov EV, Southard RE, Joyce DL, Youker KA, et al. Organ-specific regulation of pro-inflammatory molecules in heart, lung, and kidney following brain death. J Surg Res. 2005;123(1):118–25.

    Article  CAS  PubMed  Google Scholar 

  69. Birks EJ, Burton PB, Owen V, Mullen AJ, Hunt D, Banner NR, et al. Elevated tumor necrosis factor-alpha and interleukin-6 in myocardium and serum of malfunctioning donor hearts. Circulation. 2000 Nov 7;102(19 Suppl 3):III352–8.

    CAS  PubMed  Google Scholar 

  70. Birks EJ, Owen VJ, Burton PBJ, Bishop AE, Banner NR, Khaghani A, et al. Tumor necrosis factor-α is expressed in donor heart and predicts right ventricular failure after human heart transplantation. Circulation. 2000 Jul 18;102(3):326–31.

    Article  CAS  PubMed  Google Scholar 

  71. Bittner HB, Chen EP, Biswas SS, Van Trigt P, Davis RD. Right ventricular dysfunction after cardiac transplantation: primarily related to status of donor heart. Ann Thorac Surg. 1999;68(5):1605–11.

    Article  CAS  PubMed  Google Scholar 

  72. Mankad PS, Yacoub MH. Systolic and diastolic function of both ventricles after prolonged cardioplegic arrest. Ann Thorac Surg. 1993;55(4):933–9.

    Article  CAS  PubMed  Google Scholar 

  73. Marasco SF, Esmore DS, Richardson M, Bailey M, Negri J, Rowland M, et al. Prolonged cardiac allograft ischemic time ? no impact on long-term survival but at what cost? Clin Transpl. 2007;21(3):321–9.

    Article  Google Scholar 

  74. Chen J-W, Chen Y-S, Chi N-H, Huang S-C, H-Y Y, Chou N-K, et al. Risk factors and prognosis of patients with primary graft failure after heart transplantation: An asian center experience. Transplant Proc. 2014;46(3):914–9.

    Article  PubMed  Google Scholar 

  75. Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, et al. The Registry of the International Society for heart and lung transplantation: Thirtieth Official Adult Heart Transplant Report—2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):951–64.

    Article  PubMed  Google Scholar 

  76. Davies RR, Russo MJ, Mital S, Martens TM, Sorabella RS, Hong KN, et al. Predicting survival among high-risk pediatric cardiac transplant recipients: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg. 2008;135(1):147–55. 155.e1–2

    Article  PubMed  Google Scholar 

  77. Banner NR, Thomas HL, Curnow E, Hussey JC, Rogers CA, Bonser RS. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation. 2008;86(4):542–7.

    Article  PubMed  Google Scholar 

  78. Dipchand AI, Kirk R, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, et al. The Registry of the International Society for heart and lung transplantation: Sixteenth Official Pediatric Heart Transplantation Report—2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):979–88.

    Article  PubMed  Google Scholar 

  79. Conway J, Chin C, Kemna M, Burch M, Barnes A, Tresler M, et al. Donors’ characteristics and impact on outcomes in pediatric heart transplant recipients. Pediatr Transplant. 2013;17(8):774–81.

    Article  PubMed  Google Scholar 

  80. Ford MA, Almond CS, Gauvreau K, Piercey G, Blume ED, Smoot LB, et al. Association of graft ischemic time with survival after heart transplant among children in the United States. J Heart Lung Transplant. 2011;30(11):1244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hoskote A, Carter C, Rees P, Elliott M, Burch M, Brown K. Acute right ventricular failure after pediatric cardiac transplant: predictors and long-term outcome in current era of transplantation medicine. J Thorac Cardiovasc Surg. 2010;139(1):146–53.

    Article  PubMed  Google Scholar 

  82. Ahlgren B, Puskas F, Seres T. Total ischemia time alters the longitudinal and circumferential shortening of the right ventricle in transplanted hearts. Seminars in cardiothoracic and vascular anesthesia [Internet]. Sage Publications; 2011 [cited 2014 Oct 25]. p. 163–8. http://scv.sagepub.com/content/15/4/163.short

  83. Mastouri R, Batres Y, Lenet A, Gradus-Pizlo I, O’Donnell J, Feigenbaum H, et al. Frequency, time course, and possible causes of right ventricular systolic dysfunction after cardiac transplantation: a single center experience. Echocardiography. 2013;30(1):9–16.

    Article  PubMed  Google Scholar 

  84. Weyman AE, Wann S, Feigenbaum H, Dillon JC. Mechanism of abnormal septal motion in patients with right ventricular volume overload: a cross-sectional echocardiographic study. Circulation. 1976 Aug 1;54(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  85. Pettigrew JB. On the arrangement of the muscular fibres in the ventricles of the vertebrate heart, with physiological remarks. Philos Trans R Soc Lond. 1864;154:445–500.

    Article  Google Scholar 

  86. Froeling M, Strijkers GJ, Nederveen AJ, Chamuleau SA, Luijten PR. Diffusion tensor MRI of the heart—in Vivo Imaging of myocardial fiber architecture. Curr Cardiovasc Imaging Rep. 2014 Jul 1;7(7):1–11.

    Article  Google Scholar 

  87. Bemis CE, Serur JR, Borkenhagen D, Sonnenblick EH, Urschel CW. Influence of right ventricular filling pressure on left ventricular pressure and dimension. Circ Res. 1974 Apr 1;34(4):498–504.

    Article  CAS  PubMed  Google Scholar 

  88. Brinker JA, Weiss JL, Lappé DL, Rabson JL, Summer WR, Permutt S, et al. Leftward septal displacement during right ventricular loading in man. Circulation. 1980 Mar 1;61(3):626–33.

    Article  CAS  PubMed  Google Scholar 

  89. Taylor RR, Covell JW, Sonnenblick EH, J Ross J. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol: Leg Content. 1967 Sep 1;213(3):711–8.

    CAS  Google Scholar 

  90. Janicki JS, Weber KT. The pericardium and ventricular interaction, distensibility, and function. Am J Physiol—Heart Circ Physiol. 1980 Apr 1;238(4):H494–503.

    CAS  Google Scholar 

  91. Goldstein JA, Vlahakes GJ, Verrier ED, Schiller NB, Tyberg JV, Ports TA, et al. The role of right ventricular systolic dysfunction and elevated intrapericardial pressure in the genesis of low output in experimental right ventricular infarction. Circulation. 1982 Mar 1;65(3):513–22.

    Article  CAS  PubMed  Google Scholar 

  92. Berisha S, Kastrati A, Goda A, Popa Y. Optimal value of filling pressure in the right side of the heart in acute right ventricular infarction. Br Heart J. 1990;63(2):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Graham TP, Jarmakani JM, Canent RV. Left heart volume characteristics with a right ventricular volume overload total anomalous pulmonary venous connection and large atrial septal defect. Circulation. 1972 Feb 1;45(2):389–96.

    Article  PubMed  Google Scholar 

  94. Popio KA, Gorlin R, Teichholz LE, Cohn PF, Bechtel D, Herman MV. Abnormalities of left ventricular function and geometry in adults with an atrial septal defect: ventriculographic, hemodynamic and echocardiographic studies. Am J Cardiol. 1975;36(3):302–8.

    Article  CAS  PubMed  Google Scholar 

  95. Jardin F, Dubourg O, Guéret P, Delorme G, Bourdarias J-P. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol. 1987;10(6):1201–6.

    Article  CAS  PubMed  Google Scholar 

  96. Boxt LM, Katz J, Kolb T, Czegledy FP, Barst RJ. Direct quantitation of right and left ventricular volumes with nuclear magnetic resonance imaging in patients with primary pulmonary hypertension. J Am Coll Cardiol. 1992;19(7):1508–15.

    Article  CAS  PubMed  Google Scholar 

  97. Belenkie I, Dani R, Smith ER, Tyberg JV. Effects of volume loading during experimental acute pulmonary embolism. Circulation. 1989;80(1):178–88.

    Article  CAS  PubMed  Google Scholar 

  98. Yamaguchi S, Harasawa H, Li KS, Zhu D, Santamore WP. Comparative significance in systolic ventricular interaction. Cardiovasc Res. 1991;25(9):774–83.

    Article  CAS  PubMed  Google Scholar 

  99. Farrar DJ, Woodard JC, Chow E. Pacing-induced dilated cardiomyopathy increases left-to-right ventricular systolic interaction. Circulation. 1993 Aug 1;88(2):720–5.

    Article  CAS  PubMed  Google Scholar 

  100. Hoffman D, Sisto D, Frater RW, Nikolic SD. Left-to-right ventricular interaction with a noncontracting right ventricle. J Thorac Cardiovasc Surg. 1994;107(6):1496–502.

    CAS  PubMed  Google Scholar 

  101. Damiano RJ, La Follette P, Cox JL, Lowe JE, Santamore WP. Significant left ventricular contribution to right ventricular systolic function. Am J Phys. 1991;261(5 Pt 2):H1514–24.

    Google Scholar 

  102. Farrar DJ, Chow E, Brown CD. Isolated systolic and diastolic ventricular interactions in pacing-induced dilated cardiomyopathy and effects of volume loading and pericardium. Circulation. 1995 Sep 1;92(5):1284–90.

    Article  CAS  PubMed  Google Scholar 

  103. Schranz D, Rupp S, Müller M, Schmidt D, Bauer A, Valeske K, et al. Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant. 2013;32(5):475–81.

    Article  PubMed  Google Scholar 

  104. Brookes C, Ravn H, White P, Moeldrup U, Oldershaw P, Redington A. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999 Aug 17;100(7):761–7.

    Article  CAS  PubMed  Google Scholar 

  105. Takagaki M, Ishino K, Kawada M, Ohtsuki S, Hirota M, Tedoriya T, et al. Total right ventricular exclusion improves left ventricular function in patients with end-stage congestive right ventricular failure. Circulation. 2003 Sep 9;108(10 suppl 1):II – 226–9.

    Google Scholar 

  106. Davis KL, Mehlhorn U, Laine GA, Allen SJ. Myocardial edema, left ventricular function, and pulmonary hypertension. J Appl Physiol. 1995 Jan 1;78(1):132–7.

    Article  CAS  PubMed  Google Scholar 

  107. Amà R, Leather HA, Segers P, Vandermeersch E, Wouters PF. Acute pulmonary hypertension causes depression of left ventricular contractility and relaxation. Eur J Anaesthesiol. 2006;23(10):824–31.

    Article  PubMed  Google Scholar 

  108. Pinsky MR, Perlini S, Luigi Solda P, Pantaleo P, Calciati A, Bernardi L. Dynamic right and left ventricular interactions in the rabbit: Simultaneous measurement of ventricular pressure-volume loops. J Crit Care. 1996;11(2):65–76.

    Article  CAS  PubMed  Google Scholar 

  109. Hosenpud JD, Bennett LE, Keck BM, Boucek MM, Novick RJ. The Registry of the International Society for heart and lung transplantation: seventeenth official report—2000. J Heart Lung Transplant. 2000;19(10):909–31.

    Article  CAS  PubMed  Google Scholar 

  110. Griepp RB, Stinson EB, Dong E, D a C, Shumway NE. Determinants of operative risk in human heart transplantation. Am J Surg. 1971;122(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  111. Addonizio LJ, Gersony WM, Robbins RC, Drusin RE, Smith CR, Reison DS, et al. Elevated pulmonary vascular resistance and cardiac transplantation. Circulation. 1987;76:V52–5.

    Article  CAS  PubMed  Google Scholar 

  112. Kirklin JK, Naftel DC, Kirklin JW, Blackstone EH, White-Williams C, Bourge RC. Pulmonary vascular resistance and the risk of heart transplantation. J Heart Transplant. 1988;7(5):331–6.

    CAS  PubMed  Google Scholar 

  113. Erickson KW, Costanzo-Nordin MR, O’Sullivan EJ, Johnson MR, Zucker MJ, Pifarré R, et al. Influence of preoperative transpulmonary gradient on late mortality after orthotopic heart transplantation. J Heart Transplant. 1990;9(5):526–37.

    CAS  PubMed  Google Scholar 

  114. Chen JM, Levin HR, Michler RE, Prusmack CJ, Rose EA, Aaronson KD. Reevaluating the significance of pulmonary hypertension before cardiac transplantation: determination of optimal thresholds and quantification of the effect of reversibility on perioperative mortality. J Thorac Cardiovasc Surg. 1997;114(4):627–34.

    Article  CAS  PubMed  Google Scholar 

  115. Espinoza C, Manito N, Roca J, Castells E, Mauri J, Ribas M, et al. Reversibility of pulmonary hypertension in patients evaluated for orthotopic heart transplantation: importance in the postoperative morbidity and mortality. Transplant Proc. 1999;31(6):2503–4.

    Article  CAS  PubMed  Google Scholar 

  116. Costanzo MR, Augustine S, Bourge R, Bristow M, O’Connell JB, Driscoll D, et al. Selection and treatment of candidates for heart transplantation a statement for health professionals from the Committee on Heart Failure and Cardiac Transplantation of the Council on Clinical Cardiology, American Heart Association. Circulation. 1995 Dec 15;92(12):3593–612.

    Article  CAS  PubMed  Google Scholar 

  117. O’Connell JB, Bourge RC, Costanzo-Nordin MR, Driscoll DJ, Morgan JP, Rose EA, et al. Cardiac transplantation: recipient selection, donor procurement, and medical follow-up. A statement for health professionals from the Committee on Cardiac Transplantation of the Council on Clinical Cardiology, American Heart Association. Circulation. 1992 Sep 1;86(3):1061–79.

    Article  PubMed  Google Scholar 

  118. Mudge GH, Goldstein S, Addonizio LJ, Caplan A, Mancini D, Levine TB, et al. 24th Bethesda conference: Cardiac transplantation. Task Force 3: Recipient guidelines/prioritization. J Am Coll Cardiol. 1993;22(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  119. Kirklin JK, Naftel DC, McGlffin DC, McVay RF, Blackstone EH, Karp RB. Analysis of morbid events and risk factors for death after cardiac transplantation. J Am Coll Cardiol. 1988;11(5):917–24.

    Article  CAS  PubMed  Google Scholar 

  120. Taylor DO, Edwards LB, Boucek MM, Trulock EP, Keck BM, Hertz MI. The Registry of the International Society for Heart and Lung Transplantation: twenty-first official adult heart transplant report—2004. J Heart Lung Transplant. 2004;23(7):796–803.

    Article  PubMed  Google Scholar 

  121. Murali S, Kormos RL, Uretsky BF, Schechter D, Reddy PS, Denys BG, et al. Preoperative pulmonary hemodynamics and early mortality after orthotopic cardiac transplantation: the Pittsburgh experience. Am Heart J. 1993;126(4):896–904.

    Article  CAS  PubMed  Google Scholar 

  122. Brimioulle S, Maggiorini M, Stephanazzi J, Vermeulen F, Lejeune P, Naeije R. Effects of low flow on pulmonary vascular flow–pressure curves and pulmonary vascular impedance. Cardiovasc Res. 1999;42(1):183–92.

    Article  CAS  PubMed  Google Scholar 

  123. Naeije R, Vachiery J-L, Yerly P, Vanderpool R. The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur Respir J. 2013;41(1):217–23.

    Article  PubMed  Google Scholar 

  124. Gorlitzer M, Ankersmit J, Fiegl N, Meinhart J, Lanzenberger M, Unal K, et al. Is the transpulmonary pressure gradient a predictor for mortality after orthotopic cardiac transplantation? Transpl Int Off J Eur Soc Organ Transplant. 2005;18(4):390–5.

    Article  Google Scholar 

  125. Iberer F, Wasler A, Tscheliessnigg K, Petutschnigg B, Auer T, Müller H, et al. Prostaglandin E1-induced moderation of elevated pulmonary vascular resistance. Survival on waiting list and results of orthotopic heart transplantation. J Heart Lung Transplant. 1993;12(2):173–8.

    CAS  PubMed  Google Scholar 

  126. Zales VR, Pahl E, Backer CL, Crawford S, Mavroudis C, Benson DW. Pharmacologic reduction of pretransplantation pulmonary vascular resistance predicts outcome after pediatric heart transplantation. J Heart Lung Transplant. 1993;12(6 Pt 1):965–72. discussion 972–3

    CAS  PubMed  Google Scholar 

  127. Klotz S, Deng MC b, Hanafy D, Schmid C, Stypmann J, Schmidt C, et al. Reversible pulmonary hypertension in heart transplant candidates—Pretransplant evaluation and outcome after orthotopic heart transplantation. Eur J Heart Fail. 2003;5(5):645–53.

    Article  PubMed  Google Scholar 

  128. Drakos SG, Kfoury AG, Gilbert EM, Horne BD, Long JW, Stringham JC, et al. Effect of reversible pulmonary hypertension on outcomes after heart transplantation. J Heart Lung Transplant. 2007;26(4):319–23.

    Article  PubMed  Google Scholar 

  129. Kawaguchi A, Gandjbakhch I, Pavie A, Bors V, Muneretto C, Leger P, et al. Cardiac transplant recipients with preoperative pulmonary hypertension. Evolution of pulmonary hemodynamics and surgical options. Circulation. 1989;80(5 Pt 2):III90–6.

    CAS  PubMed  Google Scholar 

  130. Butler J, Stankewicz MA, Wu J, Chomsky DB, Howser RL, Khadim G, et al. Pre-transplant reversible pulmonary hypertension predicts higher risk for mortality after cardiac transplantation. J Heart Lung Transplant. 2005;24(2):170–7.

    Article  PubMed  Google Scholar 

  131. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery J-L, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009 Oct 1;30(20):2493–537.

    Article  PubMed  Google Scholar 

  132. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: Developed in Collaboration With the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009 Apr 28;119(16):2250–94.

    Article  PubMed  Google Scholar 

  133. Adamson RM, Dembitsky WP, Jaski BE, Daily PO, Moreno R, Kim JC, et al. Left ventricular assist device support of medically unresponsive pulmonary hypertension and aortic insufficiency ASAIO. J Am Soc Artif Intern Organs 1992. 1997;43(4):365–9.

    Article  CAS  Google Scholar 

  134. Alba AC, Rao V, Ross HJ, Jensen AS, Sander K, Gustafsson F, et al. Impact of fixed pulmonary hypertension on post-heart transplant outcomes in bridge-to-transplant patients. J Heart Lung Transplant. 2010;29(11):1253–8.

    Article  PubMed  Google Scholar 

  135. Kutty RS, Parameshwar J, Lewis C, Catarino PA, Sudarshan CD, Jenkins DP, et al. Use of centrifugal left ventricular assist device as a bridge to candidacy in severe heart failure with secondary pulmonary hypertension. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2013;43(6):1237–42.

    Article  Google Scholar 

  136. Bhatia SJ, Kirshenbaum JM, Shemin RJ, Cohn LH, Collins JJ, Di Sesa VJ, et al. Time course of resolution of pulmonary hypertension and right ventricular remodeling after orthotopic cardiac transplantation. Circulation. 1987;76(4):819–26.

    Article  CAS  PubMed  Google Scholar 

  137. Gajarski RJ, J a T, Bricker JT, Radovancevic B, Frazier OH, Price JK, et al. Intermediate follow-up of pediatric heart transplant recipients with elevated pulmonary vascular resistance index. J Am Coll Cardiol. 1994;23(7):1682–7.

    Article  CAS  PubMed  Google Scholar 

  138. Kimberling MT, Balzer DT, Hirsch R, Mendeloff E, Huddleston CB, Canter CE. Cardiac transplantation for pediatric restrictive cardiomyopathy: presentation, evaluation, and short-term outcome. J Heart Lung Transplant. 2002;21(4):455–9.

    Article  PubMed  Google Scholar 

  139. Russo MJ, Iribarne A, Hong KN, Ramlawi B, Chen JM, Takayama H, et al. Factors associated with primary graft failure after heart transplantation. Transplantation. 2010;90:444–50.

    Article  PubMed  Google Scholar 

  140. Iyer A, Kumarasinghe G, Hicks M, Watson A, Gao L, Doyle A, et al. Primary graft failure after heart transplantation. J Transp Secur. 2011;2011:175768.

    Google Scholar 

  141. Kirk R, Dipchand AI, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, et al. The Registry of the International Society for Heart and Lung Transplantation: fifteenth pediatric heart transplantation report—2012. J Heart Lung Transplant. 2012;31(10):1065–72.

    Article  PubMed  Google Scholar 

  142. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report—2011. J Heart Lung Transplant. 2011;30(10):1078–94.

    Article  PubMed  Google Scholar 

  143. Huang J, Trinkaus K, Huddleston CB, Mendeloff EN, Spray TL, Canter CE. Risk factors for primary graft failure after pediatric cardiac transplantation: importance of recipient and donor characteristics. J Heart Lung Transplant. 2004;23(6):716–22.

    Article  PubMed  Google Scholar 

  144. Patel ND, Weiss ES, Nwakanma LU, Russell SD, Baumgartner WA, Shah AS, et al. Impact of donor-to-recipient weight ratio on survival after heart transplantation analysis of the United Network for organ sharing database. Circulation. 2008 Sep 30;118(14 suppl 1):S83–8.

    Article  PubMed  Google Scholar 

  145. Costanzo-Nordin MR, Liao YL, Grusk BB, O’Sullivan EJ, Cooper RS, Johnson MR, et al. Oversizing of donor hearts: beneficial or detrimental? J Heart Lung Transplant. 1991;10(5 Pt 1):717–30.

    CAS  PubMed  Google Scholar 

  146. Tamisier D, Vouhé P, Le Bidois J, Mauriat P, Khoury W, Leca F. Donor-recipient size matching in pediatric heart transplantation: a word of caution about small grafts. J Heart Lung Transplant. 1996;15(2):190–5.

    CAS  PubMed  Google Scholar 

  147. Fraser CD, Jaquiss RDB, Rosenthal DN, Humpl T, Canter CE, Blackstone EH, et al. Prospective trial of a pediatric ventricular assist device. N Engl J Med. 2012 Aug 9;367(6):532–41.

    Article  CAS  PubMed  Google Scholar 

  148. Perez-Villa F, Farrero M, Sionis A, Castel A, Roig E. Therapy with sildenafil or bosentan decreases pulmonary vascular resistance in patients ineligible for heart transplantation because of severe pulmonary hypertension. J Heart Lung Transplant. 2010;29(7):817–8.

    Article  PubMed  Google Scholar 

  149. Perez-Villa F, Farrero M, Cardona M, Castel MA, Tatjer I, Penela D, et al. Bosentan in heart transplantation candidates with severe pulmonary hypertension: efficacy, safety and outcome after transplantation. Clin Transpl. 2013;27(1):25–31.

    Article  CAS  Google Scholar 

  150. De Santo LS, Romano G, Maiello C, Buonocore M, Cefarelli M, Galdieri N, et al. Pulmonary artery hypertension in heart transplant recipients: how much is too much? Eur J Cardiothorac Surg. 2012 Nov 1;42(5):864–70.

    Article  PubMed  Google Scholar 

  151. Losman JG, Barnard CN. Heterotopic heart transplantation: a valid alternative to orthotopic transplantation: results, advantages, and disadvantages. J Surg Res. 1982;32(4):297–312.

    Article  CAS  PubMed  Google Scholar 

  152. Jahanyar J, Koerner MM, Ghodsizad A, Loebe M, Noon GP. Heterotopic heart transplantation: the United States experience. Heart Surg Forum. 2014;17(3):E132–40.

    Article  PubMed  Google Scholar 

  153. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J Heart Lung Transplant. 2012;31(10):1052–64.

    Article  PubMed  Google Scholar 

  154. Birks EJ, Yacoub MH, Anyanwu A, Smith RR, Banner NR, Khaghani A. Transplantation using hearts from primary pulmonary hypertensive donors for recipients with a high pulmonary vascular resistance. J Heart Lung Transplant. 2004;23(12):1339–44.

    Article  PubMed  Google Scholar 

  155. Benden C, Edwards LB, Kucheryavaya AY, Christie JD, Dipchand AI, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: Sixteenth Official Pediatric Lung and Heart-Lung Transplantation Report—2013; Focus Theme: Age. J Heart Lung Transplant. 2013;32(10):989–97.

    Article  PubMed  Google Scholar 

  156. Yusen RD, Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Adult Lung and Heart-Lung Transplant Report—2013; Focus Theme: age. J Heart Lung Transplant. 2013;32(10):965–78.

    Article  PubMed  Google Scholar 

  157. Greyson CR. Right heart failure in the intensive care unit. Curr Opin Crit Care. 2012;18:424–31.

    Article  PubMed  Google Scholar 

  158. Daudel F, Tuller D, Krahenbuhl S, Jakob SM, Takala J. Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study. Crit Care. 2010;14(3):R122.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Von Ballmoos MW, Takala J, Roeck M, Porta F, Tueller D, Ganter CC, et al. Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care Lond Engl. 2010;14(3):R111.

    Article  Google Scholar 

  160. Kieler-Jensen N, Lundin S, Ricksten SE. Vasodilator therapy after heart transplantation: effects of inhaled nitric oxide and intravenous prostacyclin, prostaglandin E1, and sodium nitroprusside. J Heart Lung Transplant. 1995;14(3):436–43.

    CAS  PubMed  Google Scholar 

  161. Auler Júnior JO, Carmona MJ, Bocchi EA, Bacal F, Fiorelli AI, Stolf NA, et al. Low doses of inhaled nitric oxide in heart transplant recipients. J Heart Lung Transplant. 1996;15(5):443–50.

    PubMed  Google Scholar 

  162. Rajek A, Pernerstorfer T, Kastner J, Mares P, Grabenwöger M, Sessler DI, et al. Inhaled nitric oxide reduces pulmonary vascular resistance more than prostaglandin E1 during heart transplantation. Anesth Analg. 2000;90(3):523–30.

    Article  CAS  PubMed  Google Scholar 

  163. Sablotzki A, Hentschel T, Gruenig E, Schubert S, Friedrich I, Mühling J, et al. Hemodynamic effects of inhaled aerosolized iloprost and inhaled nitric oxide in heart transplant candidates with elevated pulmonary vascular resistance. Eur J Cardiothorac Surg. 2002 Nov 1;22(5):746–52.

    Article  PubMed  Google Scholar 

  164. Vincent JL, Carlier E, Pinsky MR, Goldstein J, Naeije R, Lejeune P, et al. Prostaglandin E1 infusion for right ventricular failure after cardiac transplantation. J Thorac Cardiovasc Surg. 1992;103(1):33–9.

    CAS  PubMed  Google Scholar 

  165. Maruszewski M, Zakliczyński M, Przybylski R, Kucewicz-Czech E, Zembala M. Use of sildenafil in heart transplant recipients with pulmonary hypertension may prevent right heart failure. Transplant Proc. 2007;39(9):2850–2.

    Article  CAS  PubMed  Google Scholar 

  166. Bauer J, Dapper F, Demirakça S, Knothe C, Thul J, Hagel KJ. Perioperative management of pulmonary hypertension after heart transplantation in childhood. J Heart Lung Transplant. 1997;16(12):1238–47.

    CAS  PubMed  Google Scholar 

  167. Ardehali A, Hughes K, Sadeghi A, Esmailian F, Marelli D, Moriguchi J, et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation. 2001;72(4):638–41.

    Article  CAS  PubMed  Google Scholar 

  168. Wagner F. Monitoring and management of right ventricular function following cardiac transplantation. Appl Cardiopulm Pathophysiol. 2011;15:220–9.

    Google Scholar 

  169. Stobierska-Dzierzek B, Awad H, Michler RE. The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol. 2001;38(4):923–31.

    Article  CAS  PubMed  Google Scholar 

  170. Weis F, Beiras-Fernandez A, Kaczmarek I, Sodian R, Kur F, Weis M, et al. Levosimendan: a new therapeutic option in the treatment of primary graft dysfunction after heart transplantation. J Heart Lung Transplant. 2009;28(5):501–4.

    Article  PubMed  Google Scholar 

  171. Pérez Vela JL, Corres Peiretti MA, Rubio Regidor M, Hernández Tejedor A, Renes Carreño E, Arribas López P, et al. Levosimendan for postoperative ventricular dysfunction following heart transplantation. Rev Esp Cardiol Engl Ed. 2008;61(5):534–9.

    Article  Google Scholar 

  172. Beiras-Fernandez A, Kur F, Kaczmarek I, Frisch P, Weis M, Reichart B, et al. Levosimendan for primary graft failure after heart transplantation: a 3-year follow-up. Transplant Proc. 2011;43(6):2260–2.

    Article  CAS  PubMed  Google Scholar 

  173. Arafa OE, Geiran OR, Andersen K, Fosse E, Simonsen S, Svennevig JL. Intraaortic balloon pumping for predominantly right ventricular failure after heart transplantation. Ann Thorac Surg. 2000;70(5):1587–93.

    Article  CAS  PubMed  Google Scholar 

  174. Ibrahim M, Hendry P, Masters R, Rubens F, Lam B-K, Ruel M, et al. Management of acute severe perioperative failure of cardiac allografts: a single-centre experience with a review of the literature. Can J Cardiol. 2007;23(5):363–7.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Tenderich G, Koerner MM, Stuettgen B, Minami K, El-Banayosy A, Arusoglu L, et al. Mechanical circulatory support after orthotopic heart transplantation. Int J Artif Organs. 1998;21(7):414–6.

    CAS  PubMed  Google Scholar 

  176. Minev PA, El-Banayosy A, Minami K, Körtke H, Kizner L, Körfer R. Differential indication for mechanical circulatory support following heart transplantation. Intensive Care Med. 2001;27(8):1321–7.

    Article  CAS  PubMed  Google Scholar 

  177. Thomas HL, Dronavalli VB, Parameshwar J, Bonser RS, Banner NR. Incidence and outcome of Levitronix CentriMag support as rescue therapy for early cardiac allograft failure: a United Kingdom national study. Eur J Cardiothorac Surg. 2011 Dec 1;40(6):1348–54.

    PubMed  Google Scholar 

  178. D’Alessandro C, Aubert S, Golmard JL, Praschker BL, Luyt CE, Pavie A, et al. Extra-corporeal membrane oxygenation temporary support for early graft failure after cardiac transplantation. Eur J Cardiothorac Surg. 2010 Feb 1;37(2):343–9.

    PubMed  Google Scholar 

  179. Marasco SF, Esmore DS, Negri J, Rowland M, Newcomb A, Rosenfeldt FL, et al. Early institution of mechanical support improves outcomes in primary cardiac allograft failure. J Heart Lung Transplant. 2005;24(12):2037–42.

    Article  PubMed  Google Scholar 

  180. Marasco SF, Vale M, Pellegrino V, Preovolos A, Leet A, Kras A, et al. Extracorporeal membrane oxygenation in primary graft failure after heart transplantation. Ann Thorac Surg. 2010;90:1541–6.

    Article  PubMed  Google Scholar 

  181. Listijono DR, Watson A, Pye R, Keogh AM, Kotlyar E, Spratt P, et al. Usefulness of extracorporeal membrane oxygenation for early cardiac allograft dysfunction. J Heart Lung Transplant. 2011;30(7):783–9.

    Article  PubMed  Google Scholar 

  182. Bando K, Konishi H, Komatsu K, Fricker FJ, del Nido PJ, Francalancia NA, et al. Improved survival following pediatric cardiac transplantation in high-risk patients. Circulation. 1993;88(5 Pt 2):II218–23.

    CAS  PubMed  Google Scholar 

  183. Kirshbom PM, Bridges ND, Myung RJ, Gaynor JW, Clark BJ, Spray TL b. Use of extracorporeal membrane oxygenation in pediatric thoracic organ transplantation. J Thorac Cardiovasc Surg. 2002;123(1):130–6.

    Article  PubMed  Google Scholar 

  184. Goland S, Czer LSC, Kass RM, De Robertis MA, Mirocha J, Coleman B, et al. Pre-existing pulmonary hypertension in patients with end-stage heart failure: impact on clinical outcome and hemodynamic follow-up after orthotopic heart transplantation. J Heart Lung Transplant. 2007;26(4):312–8.

    Article  PubMed  Google Scholar 

  185. Stehlik J, Edwards LB, Kucheryavaya AY, Aurora P, Christie JD, Kirk R, et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-seventh official adult heart transplant report—2010. J Heart Lung Transplant. 2010;29(10):1089–103.

    Article  PubMed  Google Scholar 

  186. Bourge RC, Kirklin JK, Naftel DC, White C, Mason DA, Epstein AE. Analysis and predictors of pulmonary vascular resistance after cardiac transplantation. J Thorac Cardiovasc Surg. 1991;101(3):432–44. discussion 444–5

    CAS  PubMed  Google Scholar 

  187. Lindelöw B, Andersson B, Waagstein F, Bergh CH. High and low pulmonary vascular resistance in heart transplant candidates. A 5-year follow-up after heart transplantation shows continuous reduction in resistance and no difference in complication rate. Eur Heart J. 1999;20(2):148–56.

    Article  PubMed  Google Scholar 

  188. Delgado JF, Conde E, Sánchez V, López-Ríos F, Gómez-Sánchez MA, Escribano P, et al. Pulmonary vascular remodeling in pulmonary hypertension due to chronic heart failure. Eur J Heart Fail. 2005;7(6):1011–6.

    Article  PubMed  Google Scholar 

  189. Gläser S, Meyer R, Opitz CF, Hetzer R, Ewert R. Pulmonary interstitial and vascular abnormalities following cardiac transplantation. Transplant Proc. 2008;40(10):3585–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne I. Dipchand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mathew, J., Dipchand, A.I. (2018). Right Ventricular Dysfunction Post-Heart Transplantation. In: Friedberg, M., Redington, A. (eds) Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-67096-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67096-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67094-2

  • Online ISBN: 978-3-319-67096-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics