Skip to main content

Abstract

Cardiac magnetic resonance imaging (CMR) provides unique opportunities for the assessment of right ventricular (RV) geometry, function, and myocardial structure. These allow CMR to play a pivotal role in diagnosis, monitoring, and decision-making in pediatric and congenital cardiology. CMR is the reference standard for quantification of RV volume, ejection fraction and mass. Phase contrast flow velocity mapping by CMR offers an accurate measurement of pulmonary blood flow and of the degree of pulmonary regurgitation in the presence of pulmonary valvar insufficiency, for example after Tetralogy of Fallot repair. More recently, CMR has been employed for the quantification of RV strain, rotation, and torsion. CMR allows for the complete visualization of the RV as compared to echocardiography, but is hampered by inferior temporal resolution, particular for the assessment of diastolic function. Scar imaging with late gadolinium enhancement CMR is established as a risk predictor in certain types of congenital and acquired heart disease, although it can be difficult to detect scarring with certainty in the thin walled RV myocardium. For the same reason, the assessment of diffuse myocardial fibrosis in the RV by CMR T1 mapping is challenging.

In this chapter we describe the technical underpinnings of CMR for the RV, outline its utility and limitations in pediatric and congenital heart disease, and provide examples on how CMR contributes to clinical decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging. 2008;28(1):67–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson. 2011;13:9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moledina S, Pandya B, Bartsota M, et al. Prognostic significance of cardiac magnetic resonance imaging in children with pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6(3):407–14.

    Article  PubMed  Google Scholar 

  4. Valente AM, Gauvreau K, Assenza GE, et al. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart. 2014;100(3):247–53.

    Article  PubMed  Google Scholar 

  5. Clarke CJ, Gurka MJ, Norton PT, Kramer CM, Hoyer AW. Assessment of the accuracy and reproducibility of RV volume measurements by CMR in congenital heart disease. JACC Cardiovasc Imaging. 2012;5(1):28–37.

    Article  PubMed  Google Scholar 

  6. D’Errico L, Lamacie MM, Jimenez Juan L, et al. Effects of slice orientation on reproducibility of sequential assessment of right ventricular volumes and ejection fraction: short-axis vs transverse SSFP cine cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2016;18(1):60.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grosse-Wortmann L, Lee W, Yoo SJ. Magnetic resonance imaging and computed tomography. In: Anderson R, Baker E, Penny D, Redington A, Rigby M, Wernovsky G, editors. Paediatric cardiology. Philadelphia, PA: Churchill-Livingstone; 2009. p. 363–78.

    Google Scholar 

  8. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging. 2003;17(3):323–9.

    Article  PubMed  Google Scholar 

  9. Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:19.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Robbers-Visser D, Boersma E, Helbing WA. Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging. 2009;29(3):552–9.

    Article  PubMed  Google Scholar 

  11. Sarikouch S, Peters B, Gutberlet M, et al. Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging. 2010;3(1):65–76.

    Article  PubMed  Google Scholar 

  12. Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imaging. 2008;24(7):691–8.

    Article  PubMed  Google Scholar 

  13. Crean AM, Maredia N, Ballard G, et al. 3D Echo systematically underestimates right ventricular volumes compared to cardiovascular magnetic resonance in adult congenital heart disease patients with moderate or severe RV dilatation. J Cardiovasc Magn Reson. 2011;13:78.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nagata Y, Wu VC, Kado Y, et al. Prognostic value of right ventricular ejection fraction assessed by transthoracic 3d echocardiography. Circ Cardiovasc Imaging. 2017;10(2):pii: e005384.

    Article  Google Scholar 

  15. Dragulescu A, Grosse-Wortmann L, Fackoury C, et al. Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of Fallot: clinical validation of a new echocardiographic method. J Am Soc Echocardiogr. 2011;24(11):1191–8.

    Article  PubMed  Google Scholar 

  16. Buechel ER, Dave HH, Kellenberger CJ, et al. Remodelling of the right ventricle after early pulmonary valve replacement in children with repaired tetralogy of Fallot: assessment by cardiovascular magnetic resonance. Eur Heart J. 2005;26(24):2721–7.

    Article  PubMed  Google Scholar 

  17. Knauth AL, Gauvreau K, Powell AJ, et al. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart. 2008;94(2):211–6.

    Article  CAS  PubMed  Google Scholar 

  18. Oosterhof T, van Straten A, Vliegen HW, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation. 2007;116(5):545–51.

    Article  PubMed  Google Scholar 

  19. Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005;95(6):779–82.

    Article  PubMed  Google Scholar 

  20. Rathod RH, Prakash A, Kim YY, et al. Cardiac magnetic resonance parameters predict transplantation-free survival in patients with fontan circulation. Circ Cardiovasc Imaging. 2014;7(3):502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. van der Bom T, Winter MM, Bouma BJ, et al. Effect of valsartan on systemic right ventricular function: a double-blind, randomized, placebo-controlled pilot trial. Circulation. 2013;127(3):322–30.

    Article  PubMed  Google Scholar 

  22. Hosch O, Sohns JM, Nguyen TT, et al. The total right/left-volume index: a new and simplified cardiac magnetic resonance measure to evaluate the severity of Ebstein anomaly of the tricuspid valve: a comparison with heart failure markers from various modalities. Circ Cardiovasc Imaging. 2014;7(4):601–9.

    Article  PubMed  Google Scholar 

  23. Etoom Y, Govindapillai S, Hamilton R, et al. Importance of CMR within the Task Force Criteria for the diagnosis of ARVC in children and adolescents. J Am Coll Cardiol. 2015;65(10):987–95.

    Article  PubMed  Google Scholar 

  24. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wald RM, Haber I, Wald R, Valente AM, Powell AJ, Geva T. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation. 2009;119(10):1370–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhong L, Gobeawan L, Su Y, et al. Right ventricular regional wall curvedness and area strain in patients with repaired tetralogy of Fallot. Am J Physiol Heart Circ Physiol. 2012;302(6):H1306–16.

    Article  CAS  PubMed  Google Scholar 

  27. Lytrivi ID, Ko HH, Srivastava S, et al. Regional differences in right ventricular systolic function as determined by cine magnetic resonance imaging after infundibulotomy. Am J Cardiol. 2004;94(7):970–3.

    Article  PubMed  Google Scholar 

  28. Bodhey NK, Beerbaum P, Sarikouch S, et al. Functional analysis of the components of the right ventricle in the setting of tetralogy of Fallot. Circ Cardiovasc Imaging. 2008;1(2):141–7.

    Article  PubMed  Google Scholar 

  29. Alghamdi MH, Mertens L, Lee W, Yoo SJ, Grosse-Wortmann L. Longitudinal right ventricular function is a better predictor of right ventricular contribution to exercise performance than global or outflow tract ejection fraction in tetralogy of Fallot: a combined echocardiography and magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2013;14(3):235–9.

    Article  PubMed  Google Scholar 

  30. Bove T, Vandekerckhove K, Devos D, et al. Functional analysis of the anatomical right ventricular components: should assessment of right ventricular function after repair of tetralogy of Fallot be refined? Eur J Cardiothorac Surg. 2014;45(2):e6–12.

    Article  PubMed  Google Scholar 

  31. Lee CM, Sheehan FH, Bouzas B, Chen SS, Gatzoulis MA, Kilner PJ. The shape and function of the right ventricle in Ebstein’s anomaly. Int J Cardiol. 2013;167(3):704–10.

    Article  PubMed  Google Scholar 

  32. Johansson B, Babu-Narayan SV, Kilner PJ. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J Cardiovasc Magn Reson. 2009;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gorter TM, van Melle JP, Freling HG, et al. Pulmonary regurgitant volume is superior to fraction using background-corrected phase contrast MRI in determining the severity of regurgitation in repaired tetralogy of Fallot. Int J Cardiovasc Imaging. 2015;31(6):1169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wald RM, Redington AN, Pereira A, et al. Refining the assessment of pulmonary regurgitation in adults after tetralogy of Fallot repair: should we be measuring regurgitant fraction or regurgitant volume? Eur Heart J. 2009;30(3):356–61.

    Article  PubMed  Google Scholar 

  35. O’Brien KR, Cowan BR, Jain M, Stewart RA, Kerr AJ, Young AA. MRI phase contrast velocity and flow errors in turbulent stenotic jets. J Magn Reson Imaging. 2008;28(1):210–8.

    Article  PubMed  Google Scholar 

  36. Burk J, Blanke P, Stankovic Z, et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson. 2012;14:84.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rutz T, Meierhofer C, Naumann S, et al. Comparison of MR flow quantification in peripheral and main pulmonary arteries in patients after right ventricular outflow tract surgery: A retrospective study. J Magn Reson Imaging. 2017. doi: https://doi.org/10.1002/jmri.25701 [Epub ahead of print].

  38. Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson. 2016;18(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tee M, Noble JA, Bluemke DA. Imaging techniques for cardiac strain and deformation: comparison of echocardiography, cardiac magnetic resonance and cardiac computed tomography. Expert Rev Cardiovasc Ther. 2013;11(2):221–31.

    Article  CAS  PubMed  Google Scholar 

  40. Ohyama Y, Ambale-Venkatesh B, Chamera E, et al. Comparison of strain measurement from multimodality tissue tracking with strain-encoding MRI and harmonic phase MRI in pulmonary hypertension. Int J Cardiol. 2015;182:342–8.

    Article  PubMed  Google Scholar 

  41. Shehata ML, Harouni AA, Skrok J, et al. Regional and global biventricular function in pulmonary arterial hypertension: a cardiac MR imaging study. Radiology. 2013;266(1):114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology. 2004;230(3):862–71.

    Article  PubMed  Google Scholar 

  43. Auger DA, Zhong X, Epstein FH, Spottiswoode BS. Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hor KN, Baumann R, Pedrizzetti G, et al. Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp. 2011;(48):pii: 2356.

    Google Scholar 

  45. Kempny A, Fernandez-Jimenez R, Orwat S, et al. Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson. 2012;14:32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lu JC, Ghadimi Mahani M, Agarwal PP, Cotts TB, Dorfman AL. Usefulness of right ventricular free wall strain to predict quality of life in “repaired” tetralogy of Fallot. Am J Cardiol. 2013;111(11):1644–9.

    Article  PubMed  Google Scholar 

  47. Moon TJ, Choueiter N, Geva T, Valente AM, Gauvreau K, Harrild DM. Relation of biventricular strain and dyssynchrony in repaired tetralogy of fallot measured by cardiac magnetic resonance to death and sustained ventricular tachycardia. Am J Cardiol. 2015;115(5):676–80.

    Article  PubMed  Google Scholar 

  48. Orwat S, Diller GP, Kempny A, et al. Myocardial deformation parameters predict outcome in patients with repaired tetralogy of Fallot. Heart. 2016;102(3):209–15.

    Article  CAS  PubMed  Google Scholar 

  49. Mahrholdt H, Wagner A, Judd RM, Sechtem U. Assessment of myocardial viability by cardiovascular magnetic resonance imaging. Eur Heart J. 2002;23(8):602–19.

    Article  CAS  PubMed  Google Scholar 

  50. Grosse-Wortmann L, Macgowan CK, Vidarsson L, Yoo SJ. Late gadolinium enhancement of the right ventricular myocardium: is it really different from the left? J Cardiovasc Magn Reson. 2008;10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Larose E, Ganz P, Reynolds HG, et al. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol. 2007;49(8):855–62.

    Article  PubMed  Google Scholar 

  52. Chen CA, Dusenbery SM, Valente AM, Powell AJ, Geva T. Myocardial ecv fraction assessed by CMR is associated with type of hemodynamic load and arrhythmia in repaired tetralogy of Fallot. JACC Cardiovasc Imaging. 2016;9(1):1–10.

    Article  PubMed  Google Scholar 

  53. Mehta BB, Chen X, Bilchick KC, Salerno M, Epstein FH. Accelerated and navigator-gated look-locker imaging for cardiac T1 estimation (ANGIE): development and application to T1 mapping of the right ventricle. Magn Reson Med. 2015;73(1):150–60.

    Article  PubMed  Google Scholar 

  54. Hartke LP, Gilkeson RC, O’Riordan MA, Siwik ES. Evaluation of right ventricular fibrosis in adult congenital heart disease using gadolinium-enhanced magnetic resonance imaging: initial experience in patients with right ventricular loading conditions. Congenit Heart Dis. 2006;1(5):192–201.

    Article  PubMed  Google Scholar 

  55. Kim H, Park EA, Lee W, et al. Magnetic resonance imaging findings of isolated right ventricular hypoplasia. Int J Cardiovasc Imaging. 2012;28(Suppl 2):149–52.

    Article  PubMed  Google Scholar 

  56. Riesenkampff E, Messroghli DR, Redington AN, Grosse-Wortmann L. Myocardial T1 mapping in pediatric and congenital heart disease. Circ Cardiovasc Imaging. 2015;8(2):e002504.

    Article  PubMed  Google Scholar 

  57. Chen CA, Tseng WY, Wang JK, et al. Circulating biomarkers of collagen type I metabolism mark the right ventricular fibrosis and adverse markers of clinical outcome in adults with repaired tetralogy of Fallot. Int J Cardiol. 2013;167(6):2963–8.

    Article  PubMed  Google Scholar 

  58. Jeewa A, Manickaraj AK, Mertens L, et al. Genetic determinants of right-ventricular remodeling after tetralogy of Fallot repair. Pediatr Res. 2012;72(4):407–13.

    Article  PubMed  Google Scholar 

  59. Rydman R, Gatzoulis MA, Ho SY, et al. Systemic right ventricular fibrosis detected by cardiovascular magnetic resonance is associated with clinical outcome, mainly new-onset atrial arrhythmia, in patients after atrial redirection surgery for transposition of the great arteries. Circ Cardiovasc Imaging. 2015;8(5):pii: e002628.

    Article  Google Scholar 

  60. Babu-Narayan SV, Goktekin O, Moon JC, et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation. 2005;111(16):2091–8.

    Article  PubMed  Google Scholar 

  61. Plymen CM, Sado DM, Taylor AM, et al. Diffuse myocardial fibrosis in the systemic right ventricle of patients late after Mustard or Senning surgery: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2013;14(10):963–8.

    Article  PubMed  Google Scholar 

  62. Babu-Narayan SV, Kilner PJ, Li W, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006;113(3):405–13.

    Article  CAS  PubMed  Google Scholar 

  63. Park SJ, On YK, Kim JS, et al. Relation of fragmented QRS complex to right ventricular fibrosis detected by late gadolinium enhancement cardiac magnetic resonance in adults with repaired tetralogy of fallot. Am J Cardiol. 2012;109(1):110–5.

    Article  PubMed  Google Scholar 

  64. Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging. 2010;3(6):727–34.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yim D, Riesenkampff E, Caro-Dominguez P, Yoo SJ, Seed M, Grosse-Wortmann L. Assessment of diffuse ventricular myocardial fibrosis using native t1 in children with repaired tetralogy of Fallot. Circ Cardiovasc Imaging. 2017;10(3):e005695.

    Article  PubMed  Google Scholar 

  66. Sato Y, Kato K, Hashimoto M, et al. Localized right ventricular structural abnormalities in patients with idiopathic ventricular fibrillation: magnetic resonance imaging study. Heart Vessel. 1996;11(2):100–3.

    Article  CAS  Google Scholar 

  67. Roest AA, Kunz P, Lamb HJ, Helbing WA, van der Wall EE, de Roos A. Biventricular response to supine physical exercise in young adults assessed with ultrafast magnetic resonance imaging. Am J Cardiol. 2001;87(5):601–5.

    Article  CAS  PubMed  Google Scholar 

  68. La Gerche A, Claessen G, Dymarkowski S, et al. Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur Heart J. 2015;36(30):1998–2010.

    Article  PubMed  Google Scholar 

  69. Parish V, Valverde I, Kutty S, et al. Dobutamine stress MRI in repaired tetralogy of Fallot with chronic pulmonary regurgitation: a comparison with healthy volunteers. Int J Cardiol. 2013;166(1):96–105.

    Article  PubMed  Google Scholar 

  70. Roest AA, Helbing WA, Kunz P, et al. Exercise MR imaging in the assessment of pulmonary regurgitation and biventricular function in patients after tetralogy of fallot repair. Radiology. 2002;223(1):204–11.

    Article  PubMed  Google Scholar 

  71. Luijnenburg SE, Mekic S, van den Berg J, et al. Ventricular response to dobutamine stress relates to the change in peak oxygen uptake during the 5-year follow-up in young patients with repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2014;15(2):189–94.

    Article  PubMed  Google Scholar 

  72. Robbers-Visser D, Jan Ten Harkel D, Kapusta L, et al. Usefulness of cardiac magnetic resonance imaging combined with low-dose dobutamine stress to detect an abnormal ventricular stress response in children and young adults after fontan operation at young age. Am J Cardiol. 2008;101(11):1657–62.

    Article  PubMed  Google Scholar 

  73. Tulevski II, Lee PL, Groenink M, et al. Dobutamine-induced increase of right ventricular contractility without increased stroke volume in adolescent patients with transposition of the great arteries: evaluation with magnetic resonance imaging. Int J Card Imaging. 2000;16(6):471–8.

    Article  CAS  PubMed  Google Scholar 

  74. Tops LF, Roest AA, Lamb HJ, et al. Intraatrial repair of transposition of the great arteries: use of MR imaging after exercise to evaluate regional systemic right ventricular function. Radiology. 2005;237(3):861–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Grosse-Wortmann .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Short axis of steady state free precession images at end-diastole in a patient with Tetralogy of Fallot (AVI 1221 kb)

Axial stack of steady state free precession images at end-diastole in a patient with Tetralogy of Fallot (AVI 1256 kb)

Four-dimensional phase contrast imaging in a patient with Tetralogy of Fallot, depicting the streamlines of flow during systole (a) and diastole (b). Note the flow acceleration in the right ventricular outflow tract during systole and flow reversal during diastole (images and movie courtesy of M. Rose, M. Markl, J. Robinson, C. Rigsby, Northwestern University, Chicago, IL) (MPG 2504 kb)

Tagged short axis CMR image. The grid superimposed on the heart deforms with the myocardium through the cardiac cycle. Note that the spacing between the tag lines is wider than the free wall of the right ventricle, limiting the use of CMR tagging for analysis of right ventricular mechanics (AVI 48600 kb)

Cardiac magnetic resonance feature tracking analysis in a patient with repaired tetralogy of Fallot (AVI 18145 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Grosse-Wortmann, L., Dorfman, A.L. (2018). Magnetic Resonance Assessment of RV Remodeling and Function. In: Friedberg, M., Redington, A. (eds) Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-67096-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67096-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67094-2

  • Online ISBN: 978-3-319-67096-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics