Skip to main content
  • 1204 Accesses

Abstract

The heart originates from a group of cardiac progenitor cells that form the cardiac tube, which develops into a complex four-chambered beating organ. Several tissues signal to stimulate cardiac progenitors to acquire cell fate and differentiate. The timing of differentiation of cardiac progenitors defines the first and second heart fields. The first heart field gives rise to the left ventricle. The second heart field, located anterior to the first heart field, is added to the cardiac tube to give rise mainly to the outflow tract and the right ventricle. Several epigenetic mechanisms including histone and DNA methylation stabilize the transcriptional programs controlling cardiac development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Miquerol L, Kelly RG. Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol. 2013;2(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  2. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002;3(7):544–56.

    Article  CAS  PubMed  Google Scholar 

  3. de la Cruz MV, Sanchez Gomez C, Arteaga MM, Arguello C. Experimental study of the development of the truncus and the conus in the chick embryo. J Anat. 1977;123(Pt 3):661–86.

    PubMed  PubMed Central  Google Scholar 

  4. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5(6):877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bressan M, Liu G, Mikawa T. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science. 2013;340(6133):744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Devine WP, Wythe JD, George M, Koshiba-Takeuchi K, Bruneau BG. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. elife. 2014;3:e03848.

    Article  PubMed Central  CAS  Google Scholar 

  7. Lescroart F, Chabab S, Lin X, Rulands S, Paulissen C, Rodolosse A, et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol. 2014;16(9):829–40.

    Article  CAS  PubMed  Google Scholar 

  8. Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell. EMBO J. 2015;34(6):710–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6(11):826–35.

    Article  CAS  PubMed  Google Scholar 

  10. Vincent SD, Buckingham ME. How to make a heart. Curr Top Dev Biol. 2010;90:1–41.

    Article  PubMed  Google Scholar 

  11. Chen CM, Norris D, Bhattacharya S. Transcriptional control of left-right patterning in cardiac development. Pediatr Cardiol. 2010;31(3):371–7.

    Article  CAS  PubMed  Google Scholar 

  12. Maya-Ramos L, Cleland J, Bressan M, Mikawa T. Induction of the Proepicardium. J Dev Biol. 2013;1(2):82–91.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell. 2012;22(3):639–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (2) septation of the atriums and ventricles. Heart. 2003;89(8):949–58.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart. 2003;89(9):1110–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development. 2012;139(18):3277–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamers WH, Wessels A, Verbeek FJ, Moorman AF, Viragh S, Wenink AC, et al. New findings concerning ventricular septation in the human heart. Implications for maldevelopment. Circulation. 1992;86(4):1194–205.

    Article  CAS  PubMed  Google Scholar 

  18. Allwork SP, Anderson RH. Developmental anatomy of the membranous part of the ventricular septum in the human heart. Br Heart J. 1979;41(3):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Odgers PN. The development of the pars membranacea septi in the human heart. J Anat. 1938;72(Pt 2):247–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Koshiba-Takeuchi K, Mori AD, Kaynak BL, Cebra-Thomas J, Sukonnik T, Georges RO, et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature. 2009;461(7260):95–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Webb S, Brown NA, Anderson RH. Formation of the atrioventricular septal structures in the normal mouse. Circ Res. 1998;82(6):645–56.

    Article  CAS  PubMed  Google Scholar 

  22. Hiruma T, Nakajima Y, Nakamura H. Development of pharyngeal arch arteries in early mouse embryo. J Anat. 2002;201(1):15–29.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK. Septation and separation within the outflow tract of the developing heart. J Anat. 2003;202(4):327–42.

    Article  PubMed  PubMed Central  Google Scholar 

  24. van den Hoff MJ, Moorman AF, Ruijter JM, Lamers WH, Bennington RW, Markwald RR, et al. Myocardialization of the cardiac outflow tract. Dev Biol. 1999;212(2):477–90.

    Article  PubMed  Google Scholar 

  25. McBride RE, Moore GW, Hutchins GM. Development of the outflow tract and closure of the interventricular septum in the normal human heart. Am J Anat. 1981;160(3):309–31.

    Article  CAS  PubMed  Google Scholar 

  26. Poelmann RE, Mikawa T, Gittenberger-de Groot AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn. 1998;212(3):373–84.

    Article  CAS  PubMed  Google Scholar 

  27. Minot CS. On a hitherto unrecognised form of blood circulation without capillaries in the organs of Vertebrata. Proc Boston Soc. Nat Hist. 1900;4(6):133–4.

    Google Scholar 

  28. Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, et al. A dual role for ErbB2 signaling in cardiac trabeculation. Development. 2010;137(22):3867–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9(1):49–61.

    Article  CAS  PubMed  Google Scholar 

  30. Samsa LA, Yang B, Liu J. Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation. Am J Med Genet C Semin Med Genet. 2013;163C(3):157–68.

    Article  PubMed  Google Scholar 

  31. Rawles ME. The heart-forming areas of the early chick blastoderm. Physiol Zool. 1943;16(1):22–42.

    Article  Google Scholar 

  32. Abu-Issa R, Kirby ML. Patterning of the heart field in the chick. Dev Biol. 2008;319(2):223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma Q, Zhou B, Pu WT. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol. 2008;323(1):98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishitobi H, Wakamatsu A, Liu F, Azami T, Hamada M, Matsumoto K, et al. Molecular basis for Flk1 expression in hemato-cardiovascular progenitors in the mouse. Development. 2011;138(24):5357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11(5):723–32.

    Article  CAS  PubMed  Google Scholar 

  36. Verzi MP, , McCulley DJ, De Val S, Dodou E, Black BL. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 2005;287(1):134-145.

    Article  CAS  PubMed  Google Scholar 

  37. Evans SM, Yelon D, Conlon FL, Kirby ML. Myocardial lineage development. Circ Res. 2010;107(12):1428–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol. 2013;5(3):a008292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chang CP, Bruneau BG. Epigenetics and cardiovascular development. Annu Rev Physiol. 2012;74:41–68.

    Article  CAS  PubMed  Google Scholar 

  40. Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432(7013):107–12.

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009;459(7247):708–0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vicente-Steijn R, Passier R, Wisse LJ, Schalij MJ, Poelmann RE, Gittenberger-de Groot AC, et al. Funny current channel HCN4 delineates the developing cardiac conduction system in chicken heart. Heart Rhythm. 2011;8(8):1254–63.

    Article  PubMed  Google Scholar 

  43. Spater D, Abramczuk MK, Buac K, Zangi L, Stachel MW, Clarke J, et al. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol. 2013;15(9):1098–106.

    Article  PubMed  CAS  Google Scholar 

  44. Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol. 1999;211(1):100–8.

    Article  CAS  PubMed  Google Scholar 

  45. Kelly RG, Zammit PS, Schneider A, Alonso S, Biben C, Buckingham ME. Embryonic and fetal myogenic programs act through separate enhancers at the MLC1F/3F locus. Dev Biol. 1997;187(2):183–9.

    Article  CAS  PubMed  Google Scholar 

  46. Cohen-Haguenauer O, Barton PJ, Nguyen VC, Serero S, Gross MS, Jegou-Foubert C, et al. Assignment of the human fast skeletal muscle myosin alkali light chains gene (MLC1F/MLC3F) to 2q 32.1-2qter. Hum Genet. 1988;78(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  47. Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell. 2007;128(5):947–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000;10(8):345–52.

    Article  CAS  PubMed  Google Scholar 

  49. Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999;126(15):3437–47.

    CAS  PubMed  Google Scholar 

  50. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433(7026):647–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol. 2009;336(2):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rochais F, Mesbah K, Kelly RG. Signaling pathways controlling second heart field development. Circ Res. 2009;104(8):933–42.

    Article  CAS  PubMed  Google Scholar 

  53. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001;1(3):435–40.

    Article  CAS  PubMed  Google Scholar 

  54. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001;238(1):97–109.

    Article  CAS  PubMed  Google Scholar 

  55. Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, et al. Conotruncal myocardium arises from a secondary heart field. Development. 2001;128(16):3179–88.

    CAS  PubMed  Google Scholar 

  56. Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol. 2005;281(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  57. Goddeeris MM, Rho S, Petiet A, Davenport CL, Johnson GA, Meyers EN, et al. Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development. 2008;135(10):1887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Galli D, Domínguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME. Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development. 2008;135(6):1157–67.

    Article  CAS  PubMed  Google Scholar 

  59. Snarr BS, O’Neal JL, Chintalapudi MR, Wirrig EE, Phelps AL, Kubalak SW, et al. Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circ Res. 2007;101(10):971–4.

    Article  CAS  PubMed  Google Scholar 

  60. Dominguez JN, Meilhac SM, Bland YS, Buckingham ME, Brown NA. Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart. Circ Res. 2012;111(10):1323–35.

    Article  CAS  PubMed  Google Scholar 

  61. Zaffran S, Kelly RG. New developments in the second heart field. Differentiation. 2012;84(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  62. Ryckebusch L, Wang Z, Bertrand N, Lin SC, Chi X, Schwartz R, et al. Retinoic acid deficiency alters second heart field formation. Proc Natl Acad Sci U S A. 2008;105(8):2913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sirbu IO, Zhao X, Duester G. Retinoic acid controls heart anteroposterior patterning by down-regulating Isl1 through the Fgf8 pathway. Dev Dyn. 2008;237(6):1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hochgreb T, Linhares VL, Menezes DC, Sampaio AC, Yan CY, Cardoso WV, et al. A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field. Development. 2003;130(22):5363–74.

    Article  CAS  PubMed  Google Scholar 

  65. Li P, Pashmforoush M, Sucov HM. Retinoic acid regulates differentiation of the secondary heart field and TGFbeta-mediated outflow tract septation. Dev Cell. 2010;18(3):480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, et al. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development. 2006;133(12):2419–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell. 2005;128(5):947–59.

    Article  CAS  Google Scholar 

  68. Brade T, Gessert S, Kühl M, Pandur P. The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development. Dev Biol. 2007;311(2):297–310.

    Article  CAS  PubMed  Google Scholar 

  69. de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development. 2009;136(10):1633–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lazic S, Scott IC. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev Biol. 2011;354(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  71. Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y, et al. Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature. 2011;474(7353):645–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ward C, Stadt H, Hutson M, Kirby ML. Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol. 2005;284(1):72–83.

    Article  CAS  PubMed  Google Scholar 

  73. Moon A. Mouse models of congenital cardiovascular disease. Curr Top Dev Biol. 2008;84:171–248.

    Article  CAS  PubMed  Google Scholar 

  74. Hoffmann AD, Peterson MA, Friedland-Little JM, Anderson SA, Moskowitz IP. sonic hedgehog is required in pulmonary endoderm for atrial septation. Development. 2009;136(10):1761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell. 2004;6(5):685–98.

    Article  CAS  PubMed  Google Scholar 

  76. Kelly RG, Buckingham ME. The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet. 2002;18(4):210–6.

    Article  CAS  PubMed  Google Scholar 

  77. Shenje LT, Andersen P, Uosaki H, Fernandez L, Rainer PP, Cho GS, et al. Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors. elife. 2014;3:e02164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kelly RG. The second heart field. Curr Top Dev Biol. 2012;100:33–65.

    Article  CAS  PubMed  Google Scholar 

  79. Francou A, Saint-Michel E, Mesbah K, Théveniau-Ruissy M, Rana MS, Christoffels VM, Kelly RG. Second heart field cardiac progenitor cells in the early mouse embryo. Biochim Biophys Acta. 2013;1833(4):795–8.

    Article  CAS  PubMed  Google Scholar 

  80. MacGrogan D, Nus M, de la Pompa JL. Notch signaling in cardiac development and disease. Curr Top Dev Biol. 2010;92(92):333–65.

    Article  CAS  PubMed  Google Scholar 

  81. Rochais F, Dandonneau M, Mesbah K, Jarry T, Mattei MG, Kelly RG. Hes1 is expressed in the second heart field and is required for outflow tract development. PLoS One. 2009;4(7):e6267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Klaus A, Muller M, Schulz H, Saga Y, Martin JF, Birchmeier W. Wnt/beta-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc Natl Acad Sci U S A. 2012;109(27):10921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lu H, Li Y, Wang Y, Liu Y, Wang W, Jia Z, et al. Wnt-promoted Isl1 expression through a novel TCF/LEF1 binding site and H3K9 acetylation in early stages of cardiomyocyte differentiation of P19CL6 cells. Mol Cell Biochem. 2014;391(1-2):183–92.

    Article  CAS  PubMed  Google Scholar 

  84. Tian Y, Yuan L, Goss AM, Wang T, Yang J, Lepore JJ, et al. Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev Cell. 2010;18(2):275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460(7251):113–7.

    Article  CAS  PubMed  Google Scholar 

  86. Cohen ED, Wang Z, Lepore JJ, Lu MM, Taketo MM, Epstein DJ, et al. Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest. 2007;117(7):1794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tzahor E. Wnt/beta-catenin signaling and cardiogenesis: timing does matter. Dev Cell 2007;13(1):10–3.

    Google Scholar 

  88. Park EJ, Watanabe Y, Smyth G, Miyagawa-Tomita S, Meyers E, Klingensmith J, et al. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development. 2008;135(21):3599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ilagan R, Abu-Issa R, Brown D, Yang YP, Jiao K, Schwartz RJ, et al. Fgf8 is required for anterior heart field development. Development. 2006;133(12):2435–45.

    Article  CAS  PubMed  Google Scholar 

  90. Watanabe Y, Miyagawa-Tomita S, Vincent SD, Kelly RG, Moon AM, Buckingham ME. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res. 2010;106(3):495–503.

    Article  CAS  PubMed  Google Scholar 

  91. Urness LD, Bleyl SB, Wright TJ, Moon AM, Mansour SL. Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev Biol. 2011;356(2):383–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A. A genetic link between Tbx1 and fibroblast growth factor signaling. Development. 2002;129(19):4605–11.

    CAS  PubMed  Google Scholar 

  93. Zhang Z, Huynh T, Baldini A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development. 2006;133(18):3587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baldini A. Dissecting contiguous gene defects: TBX1. Curr Opin Genet Dev. 2005;15(3):279–84.

    Article  CAS  PubMed  Google Scholar 

  95. Chen L, Fulcoli FG, Tang S, Baldini A. Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res. 2009;105(9):842–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fulcoli FG, Huynh T, Scambler PJ, Baldini A. Tbx1 regulates the BMP-Smad1 pathway in a transcription independent manner. PLoS One. 2009;4(6):e6049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Pane LS, Zhang Z, Ferrentino R, Huynh T, Cutillo L, Baldini A. Tbx1 is a negative modulator of Mef2c. Hum Mol Genet. 2012;21(11):2485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guo C, Sun Y, Zhou B, Adam RM, Li X, WT P, et al. A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Invest. 2011;121(4):1585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dyer LA, Kirby ML. Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol. 2009;330(2):305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoffmann AD, Yang XH, Burnicka-Turek O, Bosman JD, Ren X, Steimle JD, Vokes SA, McMahon AP, Kalinichenko VV, Moskowitz IP. Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation. PLoS Genet. 2014;10(10):e1004604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Mesbah K, Rana MS, Francou A, van Duijvenboden K, Papaioannou VE, Moorman AF, et al. Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Hum Mol Genet. 2012;21(6):1217–29.

    Article  CAS  PubMed  Google Scholar 

  102. Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, et al. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development. 2010;137(18):2989–3000.

    Article  CAS  PubMed  Google Scholar 

  103. Oyama K, El-Nachef D, Zhang Y, Sdek P, MacLellan WR. Epigenetic regulation of cardiac myocyte differentiation. Front Genet. 2014;5:375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell. 1998;93(3):361–72.

    Article  CAS  PubMed  Google Scholar 

  105. Kawamura T, Ono K, Morimoto T, Wada H, Hirai M, Hidaka K, et al. Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem. 2005;280(20):19682–8.

    Article  CAS  PubMed  Google Scholar 

  106. Ma K, Chan JK, Zhu G, Wu Z. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol. 2005;25(9):3575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002;110(4):479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004;24(19):8467–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151(1):206–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell. 2012;151(1):221–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet. 2002;31(1):25–32.

    CAS  PubMed  Google Scholar 

  113. Bergemann AD, Cole F, Hirschhorn K. The etiology of Wolf-Hirschhorn syndrome. Trends Genet. 2005;21(3):188–95.

    Article  CAS  PubMed  Google Scholar 

  114. Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 2009;460(7252):287–91.

    Article  CAS  PubMed  Google Scholar 

  115. Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 2012;44(3):343–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res. 2012;110(3):406–15.

    Article  CAS  PubMed  Google Scholar 

  117. Chen L, Ma Y, Kim EY, Yu W, Schwartz RJ, Qian L, et al. Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival. PLoS One. 2012;7(2):e31005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Inagawa M, Nakajima K, Makino T, Ogawa S, Kojima M, Ito S, et al. Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mech Dev. 2013;130(11-12):519–31.

    Article  CAS  PubMed  Google Scholar 

  119. Sdek P, Zhao P, Wang Y, Huang CJ, Ko CY, Butler PC, et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol. 2011;194(3):407–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7(9):715–27.

    Article  CAS  PubMed  Google Scholar 

  121. Lee S, Lee JW, Lee SK. UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell. 2012;22(1):25–37.

    Article  CAS  PubMed  Google Scholar 

  122. Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 2013;1(3):235–47.

    Article  CAS  Google Scholar 

  124. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gama-Carvalho M, Andrade J, Bras-Rosario L. Regulation of cardiac cell fate by microRNAs: implications for heart regeneration. Cell. 2014;3(4):996–1026.

    Article  CAS  Google Scholar 

  127. Hill MA. Embryology heart looping sequence.jpg. 2015 [cited 2015 May 17]. Available from: https://embryology.med.unsw.edu.au/embryology/index.php/File:Heart_Looping_Sequence.jpg.

Download references

Acknowledgements

P.D.O. is funded by the Heart and Stroke Foundation of Canada (G-17-0018613), Operational Funds from the Hospital for Sick Children, the Natural Sciences and Engineering Research Council of Canada (NSERC) (500865), and the Canadian Institutes of Health Research (CIHR) (PJT-149046). The author thanks Koroboshka Brand-Arzamendi for graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Delgado-OlguĂ­n .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado-OlguĂ­n, P. (2018). Embryological Origins: How Does the Right Ventricle Form. In: Friedberg, M., Redington, A. (eds) Right Ventricular Physiology, Adaptation and Failure in Congenital and Acquired Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-67096-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67096-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67094-2

  • Online ISBN: 978-3-319-67096-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics