Skip to main content

Nanophotonic Approach to Energy-Efficient Ultra-Fast All-Optical Gates

  • Chapter
  • First Online:
Green Photonics and Electronics

Part of the book series: NanoScience and Technology ((NANO))

  • 808 Accesses

Abstract

All-optical processing is based on fast nonlinear effects, such that light can be used to control light. The development of a novel class of low-loss semiconductor optical resonators, capable of field confinement close to the diffraction limit, has decreased the power level required to trigger nonlinear effects by several orders of magnitude. We review a decade of research on all-optical gates aiming both at fast and energy-efficient operation, with the prospect of integration on a silicon photonics platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This topic is broadly covered elsewhere in this book.

References

  1. Fujitsu europe press release, fujitsu launches second generation ultra-fast 65 GSa/s 8-bit ADC technology for 100G optical transport (2010), http://www.fujitsu.com/emea/news/pr/fseu-en_20100913-978.html

  2. Y. Akahane, T. Asano, B.S. Song, S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961), 944–947 (2003)

    Article  Google Scholar 

  3. R. Akimoto, S. Gozu, T. Mozume, H. Ishikawa, Monolithically integrated all-optical gate switch using intersubband transition in InGaAs/AlAsSb coupled double quantum wells. Opt. Exp. 19(14), 13386–13394 (2011)

    Google Scholar 

  4. V.R. Almeida, M. Lipson, Optical bistability on a silicon chip. Opt. Lett. 29(20), 2387–2389 (2004)

    Article  Google Scholar 

  5. M.E. Grein, A.H. Nejadmalayeri, C.W. Holzwarth, M.Y. Sander, M.S. Dahlem, Y. Michael, P. Michael, W. Geis Nicole, A. DiLello Jung, U. Yoon Ali Motamedi... E.P. Ippen, A. Khilo, S.J. Spector, F.X. Krtner, Photonic ADC: Overcoming the bottleneck of electronic jitter. Optics Express 20(4), 4454 (2012)

    Google Scholar 

  6. T. Aoki, N. Fukuhara, T. Osada, H. Sazawa, M. Hata, T. Inoue, Nitride passivation reduces interfacial traps in atomic-layer-deposited Al\(_{2}\)O\(_{3}\)/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition. Appl. Phys. Lett. 105(3), 033513 (2014)

    Google Scholar 

  7. A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. Sagnes, R. Raj, F. Raineri, Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells. Appl. Phys. Lett. 104(1), 011102 (2014)

    Google Scholar 

  8. A. Bazin, P. Monnier, X. Lafosse, G. Beaudoin, R. Braive, I. Sagnes, R. Raj, F. Raineri, Thermal management in hybrid InP/silicon photonic crystal nanobeam laser. Opt. Express 22(9), 10570–10578 (2014)

    Google Scholar 

  9. B.R. Bennett, R.A. Soref, J.A. del Alamo, Carrier-induced change in refractive index of InP, GaAs and InGaAsP. Quantum Electron. IEEE J. 26(1), 113–122 (1990)

    Article  Google Scholar 

  10. R. Bose, J.S. Pelc, S. Vo, C.M. Santori, R.G. Beausoleil, Carrier dynamics in GaAs photonic crystal cavities near the material band edge. Opt. Express 23(10), 12732 (2015)

    Article  Google Scholar 

  11. A.D. Bristow, J.-P.R. Wells, W.H. Fan, A.M. Fox, M.S. Skolnick, D.M. Whittaker, A. Tahraoui, T.F. Krauss, J.S. Roberts, Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides. Appl. Phys. Lett. 83(5), 851 (2003)

    Article  Google Scholar 

  12. J. Capmany, D. Novak, Microwave photonics combines two worlds. Nat. Photonics 1(6), 319–330 (2007)

    Article  Google Scholar 

  13. N. Cazier, X. Checoury, L.-D. Haret, P. Boucaud, High-frequency self-induced oscillations in a silicon nanocavity. Opt. Express 21(11), 13626–13638 (2013)

    Article  Google Scholar 

  14. S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, J. Nagle, Optimization of an inductively coupled plasma etching process of Ga In P/Ga As based material for photonic band gap applications a. J. Vac. Sci. Technol. B 23(4), 1521–1526 (2005)

    Google Scholar 

  15. Sylvain Combrié, D. Rossi, Q.V. Tran, H. Benisty, \(GaAs\) photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 \(\mu \)m. Opt. Let. 33, 1908–1910 (2008)

    Google Scholar 

  16. S. Combrié, G. Lehoucq, A. Junay, S. Malaguti, G. Bellanca, S. Trillo, L. Menager, J.P. Reithmaier, A. De Rossi, All-optical signal processing at 10 GHz using a photonic crystal molecule. Appl. Phys. Lett. 103(19), 193510 (2013)

    Article  Google Scholar 

  17. G.W. Cong, R. Akimoto, K. Akita, T. Hasama, H. Ishikawa, Low-saturation-energy-driven ultrafast all-optical switching operation in (CdS/ZnSe)/BeTe intersubband transition. Opt. Express 15(19), 12123–12130 (2007)

    Article  Google Scholar 

  18. N.J. Doran, D. Wood, Nonlinear-optical loop mirror. Opt. Letters 13(1), 56–58 (1988)

    Article  Google Scholar 

  19. H.J.S. Dorren, M.T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F.M. Huijskens, H. de Waardt, G.D. Khoe, Optical packet switching and buffering by using all-optical signal processing methods. J. Lightwave Technol. 21(1), 2–12 (2003)

    Article  Google Scholar 

  20. M. Elbadry, R. Harjani, Quadrature Frequency Generation for Wideband Wireless Applications. Springer (2015)

    Google Scholar 

  21. M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt, M. Lipson, A.L. Gaeta, Broad-band optical parametric gain on a silicon photonic chip. Nature 441(7096), 960–963 (2006)

    Article  Google Scholar 

  22. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, A. Bogoni, A fully photonics-based coherent radar system. Nature 507(7492), 341–345 (2014)

    Article  Google Scholar 

  23. H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, A.C. Gossard, A. Passner, W. Wiegmann, Optical bistability in semiconductors. Appl. Phys. Lett. 35(6), 451 (1979)

    Article  Google Scholar 

  24. H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, Differential gain and bistability using a sodium-filled fabry-perot interferometer. Phys. Rev. Lett. 36(19), 1135–1138 (1976)

    Article  Google Scholar 

  25. Y. Halioua, A. Bazin, P. Monnier, T.J. Karle, G. Roelkens, I. Sagnes, R. Raj, F. Raineri, Hybrid III-V semiconductor/silicon nanolaser. Opt. Express 19(10), 9221–9231 (2011)

    Google Scholar 

  26. K.L. Hall, J. Mark, E.P. Ippen, G. Eisenstein, Femtosecond gain dynamics in InGaAsP optical amplifiers. Appl. Phys. Lett. 56(18), 1740 (1990)

    Article  Google Scholar 

  27. T.D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, L. Goldstein, Two-dimensional photonic crystal coupled-defect laser diode. Appl. Phys. Lett. 82(1), 4–6 (2003)

    Article  Google Scholar 

  28. M.J.R. Heck, H.-W. Chen, A.W. Fang, B.R. Koch, D. Liang, H. Park, M.N. Sysak, J.E. Bowers, Hybrid silicon photonics for optical interconnects. IEEE J. Sel. Topics Quantum Electron. 17(2), 333–346 (2011)

    Article  Google Scholar 

  29. M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P.T. Kristensen, J. Mørk, J.P. Reithmaier, A. de Rossi, Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity. Appl. Phys. Lett. 103(18), 181120 (2013)

    Google Scholar 

  30. C. Husko, A. De Rossi, S. Combrié, Q. V Tran, F. Raineri, C.W. Wong, Ultrafast all-optical modulation in GaAs photonic crystal cavities. Appl. Phys. Lett. 94(2), 021111 (2009)

    Google Scholar 

  31. S. Ishii, K. Nozaki, T. Baba, Photonic molecules in photonic crystals. Jap. J. Appl. Phys. 45(8A), 6108–6111 (2006)

    Article  Google Scholar 

  32. P. Bermel, S.G. Johnson, J.D. Joannopoulos, J. Bravo-Abad, A. Rodriguez, M. Soljačić, Enhanced nonlinear optics in photonic-crystal microcavities. Opt. Express 15(24) (2007)

    Google Scholar 

  33. J.L. Jewell, S.L. McCall, A. Scherer, H.H. Houh, N.A. Whitaker, A.C. Gossard, J.H. English, Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators. Appl. Phys. Lett. 55(1), 22 (1989)

    Article  Google Scholar 

  34. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  Google Scholar 

  35. S.G. Johnson, P.R. Villeneuve, S. Fan, J.D. Joannopoulos, Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62(12), 8212 (2000)

    Article  Google Scholar 

  36. J.B. Khurgin, How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10(1), 2–6 (2015)

    Article  Google Scholar 

  37. T.K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C.H. Nam, J. Kim, Sub-100-as timing jitter optical pulse trains from mode-locked er-fiber lasers. Opt. Lett. 36(22), 4443 (2011)

    Article  Google Scholar 

  38. S. Kiravittaya, H.S. Lee, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, O.G. Schmidt, Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation. J. Appl. Phys. 109(5), 053115–053115 (2011)

    Article  Google Scholar 

  39. T.F. Krauss, R.M. De La Rue, S. Brand, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383(6602), 699–702 (1996)

    Article  Google Scholar 

  40. H.S. Lee, S. Kiravittaya, S. Kumar, J.D. Plumhof, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, O.G. Schmidt, Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation. Appl. Phys. Lett. 95(19), 191109 (2009)

    Article  Google Scholar 

  41. S. Malaguti, G. Bellanca, A. De Rossi, S. Combrie, S. Trillo, Self-pulsing driven by two-photon absorption in semiconductor nanocavities. Phys. Rev. A 83, 051802 (2011)

    Article  Google Scholar 

  42. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35(9), 1322–1331 (1999)

    Article  Google Scholar 

  43. J. Mark, J. Mork, Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory. Appl. Phys. Lett. 61(19), 2281 (1992)

    Article  Google Scholar 

  44. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Integrated microwave photonics: Integrated microwave photonics. Laser Photon. Rev. 7(4), 506–538 (2013)

    Article  Google Scholar 

  45. A. Martínez, J. Blasco, P. Sanchis, V. José Galán, J. Garcá-Rupérez et al., Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nanoletters 10, 15061511 (2010)

    Article  Google Scholar 

  46. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H.J.S. Dorren, 320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers. Opt. Lett. 36(15), 2910 (2011)

    Article  Google Scholar 

  47. C. Meuer, C. Schmidt-Langhorst, R. Bonk, H. Schmeckebier, D. Arsenijevi, G. Fiol, A. Galperin, J. Leuthold, C. Schubert, D. Bimberg, 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Opt. Express 19(6), 5134–5142 (2011)

    Article  Google Scholar 

  48. G. Moille, S. Combrié, A. De Rossi, Modeling of the carrier dynamics in nonlinear semiconductor nanoscale resonators. Phys. Rev. A 94, 023814 (2016)

    Article  Google Scholar 

  49. G. Moille, S. Combrié, K. Fuchs, M. Yacob, J.P. Reithmaier, A. de Rossi, Acceleration of the nonlinear dynamics in p-doped indium phosphide nanoscale resonators. Opt. Lett 42, 795–798 (2017)

    Google Scholar 

  50. G. Moille, S. Combrié, L. Morgenroth, G. Lehoucq, F. Neuilly, H. Bowen, D. Decoster, A. de Rossi, Integrated all-optical switch with 10ps time resolution enabled by ald. Laser Photon. Rev. 10(3), 409–419 (2016)

    Article  Google Scholar 

  51. H.C.H. Mulvad, M. Galili, L.K. Oxenlwe, H. Hao, A.T. Clausen, J.B. Jensen, C. Peucheret, P. Jeppesen, Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Opt. Express 18(2), 1438–1443 (2010)

    Article  Google Scholar 

  52. M.P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, Y. Fainman, Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4(6), 395–399 (2010)

    Article  Google Scholar 

  53. D.D. Nolte, Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs. Solid-state Electron. 33(2), 295–298 (1990)

    Article  MathSciNet  Google Scholar 

  54. M. Notomi, S. Mitsugi, Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803(R) (2006)

    Article  Google Scholar 

  55. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4(7), 477–483 (2010)

    Article  Google Scholar 

  56. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’brien, P.D. Dapkus, I. Kim, Two-dimensional photonic band-gap defect mode laser. Science 284(5421), 1819–1821 (1999)

    Article  Google Scholar 

  57. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, A 20-GSample/s 8b ADC with a 1-MByte Memory in 0.18-um CMOS. IEEE International Solid State Circuits Conference Digest of Technical Papers (2003)

    Google Scholar 

  58. D.F.Q. Xu, R.G. Beausoleil, Silicon microring resonators with 1.5-\(\upmu \)m radius. Opt. Express 16(6), 4309 (2008)

    Article  Google Scholar 

  59. P. Schvan, J. Bach, C. Falt, P. Flemke, R. Gibbins, Y. Greshishchev, N. Ben-Hamida, D. Pollex, J. Sitch, S.-C. Wang, J. Wolczanski, A 24GS/s 6b ADC in 90 nm CMOS. In 2008 IEEE International Solid-State Circuits Conference—Digest of Technical Papers, pp. 544–634. IEEE (2008)

    Google Scholar 

  60. A.J. Seeds, Microwave photonics. Microw. Theor. Tech. IEEE Trans. 50(3), 877–887 (2002)

    Article  Google Scholar 

  61. H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, Photonic crystal nanocavity with a q-factor of 9 million. Opt. Express 22(1), 916–924 (2014)

    Article  Google Scholar 

  62. M. Sheik-Bahae, D.J. Hagan, E.W. Van Stryland, Dispersion and band-gap scaling of the electronic kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96–99 (1990)

    Article  Google Scholar 

  63. M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, Dispersion of bound electron nonlinear refraction in solids. IEEE J. Quantum Electron. 27(6), 1296–1309 (1991)

    Article  Google Scholar 

  64. W. Shockley, Electrons and holes in semiconductors: with applications to transistor electronics. Van Nostrand (1950)

    Google Scholar 

  65. G.A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G.I. Stegeman, D.N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, Enhanced third-order nonlinear effects in optical AlGaAs nanowires. Opt. Express 14(20), 9377–9384 (2006)

    Article  Google Scholar 

  66. M. Soljačić, J.D. Joannopoulos, Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004)

    Article  Google Scholar 

  67. M. Soljačić, M. Ibanescu, S.G. Johnson, Y. Fink, J.D. Joannopoulos, Optimal bistable switching in nonlinear photonic crystals. Phys. Rev. E 66(5) (2002)

    Google Scholar 

  68. G.I. Stegeman, E.M. Wright, N. Finlayson, R. Zanoni, C.T. Seaton, Third order nonlinear integrated optics. Lightwave Technol. J. 6(6), 953–970 (1988)

    Article  Google Scholar 

  69. N. Shimizu, T. Ishibashi, S. Kodama, T. Furuta, High-speed response of uni-traveling-carrier photodiodes

    Google Scholar 

  70. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, S. Itabashi, Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90(3), 031115–031115 (2007)

    Article  Google Scholar 

  71. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, E. Kuramochi, All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87(15), 151112 (2005)

    Article  Google Scholar 

  72. T. Tanabe, H. Taniyama, M. Notomi, Carrier diffusion and recombination in photonic crystal nanocavity optical switches. J. Lightwave Technol. 26(11), 1396–1403 (2008)

    Article  Google Scholar 

  73. G. Tayeb, D. Maystre, Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities. J. Opt. Soc. Am. A 14(12), 3323–3332 (1997)

    Article  Google Scholar 

  74. Q. Vy Tran, S. Combrié, P. Colman, A. De Rossi, Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett. 95(6), 231104–231104 (2009)

    Google Scholar 

  75. K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)

    Article  Google Scholar 

  76. G.C. Valley, Photonic analog-to-digital converters. Opt. Express 15(5), 1955–1982 (2007)

    Article  Google Scholar 

  77. V. Van, T.A. Ibrahim, P.P. Absil, F.G. Johnson, R. Grover, P.-T. Ho, Optical signal processing using nonlinear semiconductor microring resonators. Sel. Topics Quantum Electron. IEEE J. 8(3), 705–713 (2002)

    Article  Google Scholar 

  78. D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. Oxenloewe et al., Wavelength conversion of a 9.35 Gb/s RZOOK signal in an Inp photonic crystal nanocavity. Photon. Technol. Lett. 26(257) (2014)

    Google Scholar 

  79. I.A. Walmsley, C. Dorrer, Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1(2), 308 (2009)

    Article  Google Scholar 

  80. E. Weidner, S. Combrié, A. De Rossi, N.V. Quynh, S. Cassette, Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity. Appl. Phys. Lett. 90(1), 101118 (2007)

    Article  Google Scholar 

  81. A.E. Willner, S. Khaleghi, M.R. Chitgarha, O.F. Yilmaz, All-optical signal processing. J. Lightwave Technol. 32(4), 660–680 (2014)

    Article  Google Scholar 

  82. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  Google Scholar 

  83. A.M. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators. Phys. Rev. Lett. 96, 093901 (2006)

    Google Scholar 

  84. P.D. Ye, G.D. Wilk, M.M. Frank, Processing and characterization of III–V compound semiconductor MOSFETs using atomic layer deposited gate dielectrics. In Athanasios Dimoulas, Evgeni Gusev, PaulC. McIntyre, and Marc Heyns, editors, Advanced Gate Stacks for High-Mobility Semiconductors, vol. 27 of Advanced Microelectronics, pp. 341–361. Springer, Berlin Heidelberg (2007)

    Google Scholar 

  85. Y. Yi, Y. Chen, H. Hao, W. Xue, K. Yvind, J. Mork, Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry: Nonreciprocal transmission in a nonlinear Fano structure. Laser Photon. Rev. 9(2), 241–247 (2015)

    Article  Google Scholar 

  86. Y. Yi, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, J. Mørk, Experimental demonstration of a four-port photonic crystal cross-waveguide structure. Appl. Phys. Lett. 101(25), 251113–251113 (2012)

    Article  Google Scholar 

  87. Y. Yi, E. Palushani, M. Heuck, N. Kuznetsova, P.T. Kristensen, S. Ek, D. Vukovic, C. Peucheret, L.K. Oxenløwe, S. Combrié et al., Switching characteristics of an Inp photonic crystal nanocavity: Experiment and theory. Opt. Express 21(25), 31047–31061 (2013)

    Google Scholar 

  88. Z. Zhang, M. Qiu, Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express 12(17), 3988–3995 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the French Research Agency (ANR) through the contracts Qswitch, Auctopuss and Ethan, and the European Commission, through the contracts Qphoton, Gospel, Copernicus. We thank Fabrice Raineri, Johann-Peter Reithmaier and Gadi Eisenstein for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Combrié .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moille, G., Combrié, S., De Rossi, A. (2017). Nanophotonic Approach to Energy-Efficient Ultra-Fast All-Optical Gates. In: Eisenstein, G., Bimberg, D. (eds) Green Photonics and Electronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67002-7_5

Download citation

Publish with us

Policies and ethics