Skip to main content

Quantum-Dot Semiconductor Optical Amplifiers for Energy-Efficient Optical Communication

  • Chapter
  • First Online:
Green Photonics and Electronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Quantum-dot (QD) based semiconductor optical amplifiers (SOAs) are key components for a large number of different applications in particular for all-optical communication networks. They are superior to classical semiconductor amplifiers in many important respects. Multi-wavelength amplification and signal processing at symbol rates larger than 40 GBd and operation in advanced modulation formats is needed in these networks. An introduction into the basics of QD SOAs as well as their key parameters is given at the beginning of this chapter. A novel concept for direct phase modulated signal generation is presented, unique for QD based SOAs. Error-free 25 GBd differential-phase shift keying (DPSK) signal is demonstrated, based there upon. The unique QD properties, i.e. decoupled gain dynamics of the various bound QD states, allows amplifying signals in dual-communication-band configuration both for small and large wavelength differences. Error- and distortion-free amplification of bidirectional 40 GBd on-off keying (OOK) signals, exhibiting a spectral separation of more than 91 nm is presented. Finally, all-optical wavelength conversion (AOWC) of phase-coded signals using four-wave mixing is shown. A guideline for the optimization of the conversion efficiency is given. Eventually error-free 40 GBd differential (quadrature) phase-shift keying (D(Q)PSK) AOWC is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco Systems Inc., Cisco visual networking index: forecast and methodology, 2012–2017, in WHITE PAPER (2013)

    Google Scholar 

  2. Cisco Systems Inc., Cisco visual networking index: forecast and methodology, 2014–2019, in WHITE PAPER (2015)

    Google Scholar 

  3. J.M. Senior, M.Y. Jamro, Optical Fiber Communications: Principles and Practice, 3rd edn (Financial Times/Prentice Hall, 2009)

    Google Scholar 

  4. Corning Inc., Data sheet: corning SMF-28e+ photonic optical fiber (2010)

    Google Scholar 

  5. P. Vetter, Next generation optical access technologies, in European Conference and Exhibition on Optical Communication (ECOC) (2012), pp. 1–42

    Google Scholar 

  6. K.C. Reichmann, P.P. Iannone, C. Brinton, J. Nakagawa, T. Cusick, M. Kimber, C. Doerr, L.L. Buhl, M. Cappuzzo, E.Y. Chen, L. Gomez, J. Johnson, A.M. Kanan, J. Lentz, Y.F. Chang, B. Pálsdóttir, T. Tokle, L. Spiekman, A symmetric-rate, extended-reach 40 Gb/s CWDM-TDMA PON with downstream and upstream SOA-Raman amplification. J. Light. Technol. 30(4), 479–485 (2012)

    Article  Google Scholar 

  7. D. Nesset, NG-PON2 technology and standards. J. Light. Technol. 33(5), 1136–1143 (2015)

    Article  Google Scholar 

  8. R. Bonk, Linear and nonlinear semiconductor optical amplifiers for next-generation optical networks, Doctoral Thesis, KIT Scientific Publishing (2013)

    Google Scholar 

  9. N. Suzuki, S. Yoshima, J. Nakagawa, Extended reach bidirectional optical amplified GE-PON with a high 46 dB span-budget for 64 far-end user ONUs, in Joint International Conference on the Optical Internet (COIN) and Australian Conference on Optical Fibre Technology (ACOFT) (2007), pp. 1–3

    Google Scholar 

  10. T. Pfeiffer, Converged heterogeneous optical metro-access networks, in European Conference and Exhibition on Optical Communication (ECOC) (2010), p. Tu.5.B.1

    Google Scholar 

  11. D.R. Zimmerman, L.H. Spiekman, Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications. J. Light. Technol. 22(1), 63–70 (2004)

    Article  Google Scholar 

  12. L. Spiekman, D. Piehler, P. Iannone, K. Reichmann, H.-H. Lee, Semiconductor optical amplifiers for FTTx, in International Conference on Transparent Optical Networks (ICTON), vol. 2 (2007), p. Mo.D2.4

    Google Scholar 

  13. P.P. Iannone, H.H. Lee, K.C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, L. Spiekman, Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier. J. Light. Technol. 26(1), 138–143 (2008)

    Article  Google Scholar 

  14. P.P. Iannone, K.C. Reichmann, C.Brinton, J. Nakagawa, T. Cusick, E.M. Kimber, C. Doerr, L.L. Buhl, M. Cappuzzo, E.Y. Chen, L. Gomez, J. Johnson, A.M. Kanan, J. Lentz, Y.F. Chang, B. Pálsdóttir, T. Tokle, L. Spiekman, Bi-directionally amplified extended reach 40 Gb/s CWDM-TDM PON with burst-mode upstream transmission, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC) (2011), p. PDPD6

    Google Scholar 

  15. H. Schmuck, Breitband-Zugangsnetze der nächsten Generation Verbundprojekt: CONDOR—Converged Heterogeneous Metro/Access Infrastructure (Project Report) (2013)

    Google Scholar 

  16. K. Taguchi, H. Nakamura, K. Asaka, T. Mizuno, Y. Hashizume, T. Yamada, M. Ito, H. Takahashi, S. Kimura, and N. Yoshimoto, 40-km reach symmetric 40-Gbit/s λ-tunable WDM/TDM-PON using synchronized gain-clamping SOA, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC) (2013), p. OW4D.6

    Google Scholar 

  17. A.E. Willner, O.F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S.R. Nuccio, Optically efficient nonlinear signal processing. IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011)

    Article  Google Scholar 

  18. M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22(9), 1915–1921 (1986)

    Article  Google Scholar 

  19. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, 1st edn. (Wiley, 1998)

    Google Scholar 

  20. D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44(3), 168–170 (2008)

    Article  Google Scholar 

  21. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb/s directly modulated lasers and 40 Gb/s signal-regenerative amplifiers. J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005)

    Article  Google Scholar 

  22. T. Akiyama, M. Sugawara, Y. Arakawa, Quantum-dot semiconductor optical amplifiers. Proc. IEEE 95(9), 1757–1766 (2007)

    Article  Google Scholar 

  23. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K.-I. Kitayama, Regenerative amplification by using self-phase modulation in a quantum-dot SOA. IEEE Photonics Technol. Lett. 22(7), 492–494 (2010)

    Article  Google Scholar 

  24. C. Schmidt-Langhorst, C. Meuer, A. Galperin, H. Schmeckebier, R. Ludwig, D. Puris, D. Bimberg, K. Petermann, C. Schubert, 80 Gb/s multi-wavelength booster amplification in an InGaAs/GaAs quantum-dot semiconductor optical amplifier, in European Conference and Exhibition on Optical Communication (ECOC) (2010), p. Mo.1.F.6

    Google Scholar 

  25. H. Schmeckebier, C. Meuer, D. Bimberg, C. Schmidt-Langhorst, A. Galperin, C. Schubert, Quantum dot semiconductor optical amplifiers at 1.3 µm for applications in all-optical communication networks. Semicond. Sci. Technol. 26(1), 14009 (2011)

    Article  Google Scholar 

  26. R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, J. Leuthold, The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications. IEEE Photonics J. 3(6), 1039–1053 (2011)

    Article  Google Scholar 

  27. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K. Kitayama, 160 Gb/s cross gain modulation in quantum dot SOA at 1550 nm, in European Conference and Exhibition on Optical Communication (ECOC) (2009) pp. 1–2

    Google Scholar 

  28. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K.-I. Kitayama, Cross-gain modulation in quantum-dot SOA at 1550 nm. IEEE J. Quantum Electron. 46(12), 1696–1703 (2010)

    Article  Google Scholar 

  29. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, K.-I. Kitayama, All-optical wavelength multicasting in a QD-SOA. IEEE J. Quantum Electron. 47(4), 541–547 (2011)

    Article  Google Scholar 

  30. C. Meuer, C. Schmidt-Langhorst, R. Bonk, H. Schmeckebier, D. Arsenijević, G. Fiol, A. Galperin, J. Leuthold, C. Schubert, D. Bimberg, 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Opt. Express 19(6), 5134–5142 (2011)

    Article  Google Scholar 

  31. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H.J.S. Dorren, 320-Gb/s wavelength conversion based on cross-gain modulation in a quantum-dot SOA, in European Conference and Exhibition on Optical Communication (ECOC) (2011), p. Mo.1.A.1

    Google Scholar 

  32. C. Meuer, C. Schmidt-Langhorst, H. Schmeckebier, G. Fiol, D. Arsenijević, C. Schubert, D. Bimberg, 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier. Opt. Express 19(4), 3788–3798 (2011)

    Article  Google Scholar 

  33. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H.J.S. Dorren, 320–40-Gb/s optical demultiplexing by means of optical filtering of chirped signal using a quantum-dot SOA, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC) (2012), p. OTh3H.4

    Google Scholar 

  34. H. Schmeckebier, Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication (Springer Science and Business Media, 2016)

    Google Scholar 

  35. Internatinal norm IEC 61290-1-1:1998, optical spectrum analyzer

    Google Scholar 

  36. H. Kawaguchi, Semiconductor lasers and optical amplifiers for switching and signal processing, in Handbook of Laser Technology and Applications: Laser Design and Laser Systems, vol. 2, 1st edn., ed. by C.E. Webb, J.D. C. Jones (CRC Press, 2004)

    Google Scholar 

  37. R. Bonk, T. Vallaitis, W. Freude, J. Leuthold, R.V. Penty, A. Borghesani, I.F. Lealman, Linear semiconductor optical amplifiers, in Fibre Optic Communication: Key Devices, 1st edn., ed. by H. Venghaus, N. Grote (Springer Science & Business Media, 2012), p. 682

    Google Scholar 

  38. J. Mørk, M.L. Nielsen, T.W. Berg, The dynamics of semiconductor optical amplifiers: modeling and applications. Opt. Photonics News 14(7), 42–48 (2003)

    Article  Google Scholar 

  39. C. Meuer, GaAs-based quantum-dot semiconductor optical amplifiers at 1.3 μm for all-optical networks, Doctoral Thesis, Mensch & Buch (Verlag) (2011)

    Google Scholar 

  40. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, vol. 11, 1st edn. (Springer Science & Business Media, 2013)

    Google Scholar 

  41. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Nakata, Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B 69(23), 235332 (2004)

    Article  Google Scholar 

  42. D. Bimberg (ed.), Semiconductor Nanostructures, 2nd edn. (Springer, 2008)

    Google Scholar 

  43. L.H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers. Electron. Lett. 41(1), 41–43 (2005)

    Article  Google Scholar 

  44. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, A. Kuramata, H. Ebe, Y. Arakawa, An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005)

    Article  Google Scholar 

  45. P. Borri, W. Langbein, J.M. Hvam, F. Heinrichsdorff, M.H. Mao, D. Bimberg, Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000)

    Article  Google Scholar 

  46. T.W. Berg, S. Bischoff, I. Magnusdottir, J. Mørk, Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photonics Technol. Lett. 13(6), 541–543 (2001)

    Article  Google Scholar 

  47. A.V. Uskov, T.W. Berg, J. Mørk, Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 40(3), 306–320 (2004)

    Article  Google Scholar 

  48. A.V. Uskov, E.P. O’Reilly, M. Laemmlin, N.N. Ledentsov, D. Bimberg, On gain saturation in quantum dot semiconductor optical amplifiers. Opt. Commun. 248(1–3), 211–219 (2005)

    Article  Google Scholar 

  49. B. Lingnau, Nonlinear and nonequilibrium dynamics of quantum-dot optoelectronic devices, Doctoral Thesis, Technische Universität Berlin (2015)

    Google Scholar 

  50. A.V. Uskov, E.P. O’Reilly, R.J. Manning, R.P. Webb, D. Cotter, M. Laemmlin, N.N. Ledentsov, D. Bimberg, On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers. IEEE Photonics Technol. Lett. 16(5), 1265–1267 (2004)

    Article  Google Scholar 

  51. T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, M. Sugawara, Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers. IEEE Photonics Technol. Lett. 14(8), 1139–1141 (2002)

    Article  Google Scholar 

  52. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, J. Leuthold, Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express 16(1), 170–178 (2008)

    Article  Google Scholar 

  53. S.-M. Lee, S.-G. Mun, M.-H. Kim, C.-H. Lee, Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks. J. Light. Technol. 25(1), 271–276 (2007)

    Article  Google Scholar 

  54. S.-J. Park, Y.-B. Choi, J.-M. Oh, S.-G. Koo, D. Lee, An evolution scenario of a broadband access network using R-SOA-based WDM-PON technologies. J. Light. Technol. 25(11), 3479–3487 (2007)

    Article  Google Scholar 

  55. Y. Tian, Q. Chang, Y. Su, A WDM passive optical network enabling multicasting with color-free ONUs. Opt. Express 16(14), 10434–10439 (2008)

    Article  Google Scholar 

  56. S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, C.-H. Lee, A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes. Opt. Express 16(15), 11361–11368 (2008)

    Article  Google Scholar 

  57. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J.A. Lázaro, A.N. Birbas, J. Kikidis, J. Prat, I. Tomkos, 10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization. Opt. Express 17(7), 5008–5013 (2009)

    Article  Google Scholar 

  58. B. Schrenk, G. De Valicourt, M. Omella, J.A. Lazaro, R. Brenot, J. Prat, Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget. IEEE Photonics Technol. Lett. 22(6), 392–394 (2010)

    Article  Google Scholar 

  59. R.S. Vodhanel, A.F. Elrefaie, M.Z. Iqbal, R.E. Wagner, J. Gimlett, S. Tsuji, Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems. J. Light. Technol. 8(9), 1379–1386 (1990)

    Article  Google Scholar 

  60. A.S. Karar, Y. Gao, K.P. Zhong, J.H. Ke, J.C. Cartledge, Generation of DPSK signals using a directly modulated passive feedback laser, in European Conference and Exhibition on Optical Communication (ECOC) (2012), p. Tu.4.A.1

    Google Scholar 

  61. H. Kim, Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs. IEEE Photonics Technol. Lett. 23(14), 965–967 (2011)

    Article  Google Scholar 

  62. A. Zeghuzi, H. Schmeckebier, M. Stubenrauch, C. Meuer, C. Schubert, C.-A. Bunge, D. Bimberg, 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers. Appl. Phys. Lett. 106(21), 213501 (2015)

    Article  Google Scholar 

  63. H. Schmeckebier, B. Lingnau, S. Koenig, K. Lüdge, C. Meuer, A. Zeghuzi, D. Arsenijević, M. Stubenrauch, R. Bonk, C. Koos, C. Schubert, T. Pfeiffer, D. Bimberg, Ultra-broadband bidirectional dual-band quantum-dot semiconductor optical amplifier, in Optical Fiber Communication Conference (OFC) (2015), p. Tu3I.7

    Google Scholar 

  64. T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, J. Leuthold, Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals. Opt. Express 18(6), 6270–6276 (2010)

    Article  Google Scholar 

  65. R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G.-H. Duan, S. Sygletos, C. Koos, W. Freude, J. Leuthold, Linear semiconductor optical amplifiers for amplification of advanced modulation formats. Opt. Express 20(9), 9657–9672 (2012)

    Article  Google Scholar 

  66. S. Lange, G. Contestabile, Y. Yoshida, K.-I. Kitayama, Phase-transparent amplification of 16 QAM signals in a QD-SOA. IEEE Photonics Technol. Lett. 25(24), 2486–2489 (2013)

    Article  Google Scholar 

  67. S. Schneider, P. Borri, W. Langbein, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Excited-state gain dynamics in InGaAs quantum-dot amplifiers. IEEE Photonics Technol. Lett. 17(10), 2014–2016 (2005)

    Article  Google Scholar 

  68. I. O’Driscoll, T. Piwonski, J. Houlihan, G. Huyet, R.J. Manning, B. Corbett, Phase dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 91(26), 263506 (2007)

    Article  Google Scholar 

  69. K. Uchiyama, S. Kawanishi, M. Saruwatari, 100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 10(6), 890–892 (1998)

    Article  Google Scholar 

  70. I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okamoto, K. Magari, Y. Suzuki, T. Morioka, 160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC. Electron. Lett. 38(1), 37–38 (2002)

    Article  Google Scholar 

  71. A. Sharaiha, H.W. Li, F. Marchese, J. Le Bihan, All-optical logic NOR gate using a semiconductor laser amplifier. Electron. Lett. 33(4), 323–325 (1997)

    Article  Google Scholar 

  72. H. Sun, Q. Wang, H. Dong, N.K. Dutta, XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer. Opt. Express 13(6), 1892–1899 (2005)

    Article  Google Scholar 

  73. S.J.B. Yoo, Wavelength conversion technologies for WDM network applications. J. Light. Technol. 14(6), 955–966 (1996)

    Article  Google Scholar 

  74. H. Zang, J.P. Jue, B. Mukherjee, A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000)

    Google Scholar 

  75. S. Sygletos, I. Tomkos, J. Leuthold, Technological challenges on the road toward transparent networking. J. Opt. Netw. 7(4), 321–350 (2008)

    Article  Google Scholar 

  76. C. Schubert, R. Ludwig, H.-G. Weber, High-speed optical signal processing using semiconductor optical amplifiers, in Ultrahigh-speed optical transmission technology, 1st edn., ed. by H.-G. Weber, M. Nakazawa (Springer, Heidelberg, 2007), p. 482

    Google Scholar 

  77. T. Yamamoto, M. Nakazawa, Ultrafast OTDM transmission using fiber devices for pulse compression, shaping, and demultiplexing, in Ultrahigh-speed optical transmission technology, 1st edn., ed. by H.-G. Weber, M. Nakazawa (Springer, Heidelberg, 2007), p. 482

    Google Scholar 

  78. H. Ishikawa (ed.), Ultrafast All-Optical Signal Processing Devices, 1st edn. (Wiley, 2008)

    Google Scholar 

  79. J. Leuthold, C. Koos, W. Freude, Nonlinear silicon photonics. Nat. Photonics 4(8), 535–544 (2010)

    Article  Google Scholar 

  80. D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, D.C. Rogers, Nonlinear optics for high-speed digital information processing. Science 286(5444), 1523–1528 (1999)

    Article  Google Scholar 

  81. D. Bimberg, C. Meuer, G. Fiol, H. Schmeckebier, D. Arsenijević, Four-wave mixing in 1.3 µm quantum-dot semiconductor optical amplifiers, in International Conference on Transparent Optical Networks (ICTON) (2010), p. We.D4.2

    Google Scholar 

  82. C. Meuer, H. Schmeckebier, C. Schmidt-Langhorst, G. Fiol, D. Arsenijević, C. Schubert, G. Eisenstein, D. Bimberg, Wavelength conversion of 40-Gb/s NRZ DPSK signals within a 45-nm range using a 1.3 µm quantum-dot semiconductor optical amplifier, in European Conference and Exhibition on Optical Communication (ECOC) (2011), p. We.10.P1.26

    Google Scholar 

  83. J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, C.A. Burrus, 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electron. Lett. 36(13), 1129–1130 (2000)

    Article  Google Scholar 

  84. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A.M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, I. Bennion, Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering, in Optical Fiber Communication Conference (OFC) (2006), p. PDP28

    Google Scholar 

  85. G. Contestabile, A. Maruta, K.-I. Kitayama, Four wave mixing in quantum dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 50(5), 379–389 (2014)

    Article  Google Scholar 

  86. A.E. Kelly, A.D. Ellis, D. Nesset, R. Kashyap, D.G. Moodie, 100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier. Electron. Lett. 34(20), 1955–1956 (1998)

    Article  Google Scholar 

  87. G. Contestabile, L. Banchi, M. Presi, E. Ciaramella, Investigation of transparency of FWM in SOA to advanced modulation formats involving intensity, phase, and polarization multiplexing. J. Light. Technol. 27(19), 4256–4261 (2009)

    Article  Google Scholar 

  88. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, H.J.S. Dorren, 320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers. Opt. Lett. 36(15), 2910–2912 (2011)

    Article  Google Scholar 

  89. H. Schmeckebier, C. Meuer, D. Arsenijević, G. Fiol, C. Schmidt-Langhorst, C. Schubert, G. Eisenstein, D. Bimberg, Wide-range wavelength conversion of 40-Gb/s NRZ-DPSK signals using a 1.3-µm quantum-dot semiconductor optical amplifier. IEEE Photonics Technol. Lett. 24(13), 1163–1165 (2012)

    Article  Google Scholar 

  90. G. Contestabile, Y. Yoshida, A. Maruta, K.-I. Kitayama, Coherent wavelength conversion in a quantum dot SOA. IEEE Photonics Technol. Lett. 25(9), 791–794 (2013)

    Article  Google Scholar 

  91. L. Krzczanowicz, M.J. Connelly, 40 Gb/s NRZ-DQPSK data all-optical wavelength conversion using four wave mixing in a bulk SOA. IEEE Photonics Technol. Lett. 25(24), 2439–2441 (2013)

    Article  Google Scholar 

  92. K. Kikuchi, M. Kakui, C.-E. Zah, T.-P. Lee, Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient. IEEE J. Quantum Electron. 28(1), 151–156 (1992)

    Article  Google Scholar 

  93. H. Kuwatsuka, T. Simoyama, H. Ishikawa, Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition. IEEE J. Quantum Electron. 35(12), 1817–1825 (1999)

    Article  Google Scholar 

  94. S. Diez, Why and how to study four-wave mixing?, in Photonic Devices for Telecommunications, 1st edn., ed. by G. Guekos (Springer Science & Business Media, 1999), p. 404

    Google Scholar 

  95. K. Obermann, A. Mecozzi, J. Mørk, Theory of four-wave mixing, in Photonic Devices for Telecommunications, 1st edn., ed. by G. Guekos (Springer Science & Business Media, 1999), p. 404

    Google Scholar 

  96. H. Kuwatsuka, Wavelength conversion devices, in Ultrafast All-Optical Signal Processing Devices, 1st edn., ed. by H. Ishikawa (Wiley, 2008), p. 258

    Google Scholar 

  97. S. Diez, K. Obermann, S. Scotti, D. Marcenac, F. Girardin, Related topics, in Photonic Devices for Telecommunications, 1st edn., ed. by G. Guekos (Springer Science & Business Media, 1999), p. 404

    Google Scholar 

  98. G. Grosskopf, R. Ludwig, H.G. Weber, 140 Mbit/s DPSK transmission using an all-optical frequency convertor with a 4000 GHz conversion range. Electron. Lett. 24(17), 1106–1107 (1988)

    Article  Google Scholar 

  99. T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, H. Ishikawa, Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers. Appl. Phys. Lett. 77(12), 1753 (2000)

    Article  Google Scholar 

  100. G. Contestabile, Y. Yoshida, A. Maruta, K. Kitayama, 100 nm-bandwidth positive-efficiency wavelength conversion for m-PSK and m-QAM signals in QD-SOA, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC) (2013), p. OTh1C.6

    Google Scholar 

  101. M. Matsuura, N. Kishi, 40-Gbit/s RZ-DPSK wavelength conversion using four-wave mixing in a quantum dot SOA, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC) (2011), p. JThA024

    Google Scholar 

  102. M. Matsuura, N. Calabretta, O. Raz, H.J.S. Dorren, Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier. Opt. Express 19(26), B560–B566 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank the following persons for the contribution to the results presented in this chapter: D. Arsenijevića, R. Bonkc, C.-A. Bungee, G. Fiola, G. Eisensteind, S. Königc, C. Meuera,b, C. Schmidt-Langhorstb, C. Schubertb, M. Stubenraucha, A. Zeghuzia

aAt this time with Department of Solid-State Physics, Technische Universitaet Berlin (TUB)

bAt this time with Heinrich Hertz Institute (HHI), Fraunhofer Institute for Telecommunications

cAt this time with Karlsruhe Institute of Technology (KIT)

dAt this time with Technion

eAt this time with Hochschule fuer Telekommunikation Leipzig (HfTL)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmeckebier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmeckebier, H., Bimberg, D. (2017). Quantum-Dot Semiconductor Optical Amplifiers for Energy-Efficient Optical Communication. In: Eisenstein, G., Bimberg, D. (eds) Green Photonics and Electronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67002-7_3

Download citation

Publish with us

Policies and ethics