Skip to main content

Energy-Efficient Vertical-Cavity Surface-Emitting Lasers for Optical Interconnects

  • Chapter
  • First Online:
Green Photonics and Electronics

Part of the book series: NanoScience and Technology ((NANO))

  • 818 Accesses

Abstract

General rules that describe how to achieve extremely energy-efficient data transmission with oxide-confined VCSELs are derived, explained, and verified by data transmission experiments. We demonstrate that VCSELs with smaller oxide-aperture diameters are more energy-efficient than similar VCSELs with larger oxide-aperture diameters and introduce a new method for analyzing the suitability of different VCSELs for application in different optical interconnect configurations by introducing the modulation factor M. Applying the derived rules for energy-efficient VCSEL operation enables record energy-efficient data transmission with less than 100 femto-Joules per bit in a wide range of bit rates and multimode optical fiber lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Larsson, M. Geen, J.S. Gustavsson, E.P. Haglund, A. Joel, P. Westbergh, E. Haglund, 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron Lett. 51(14), 1096–1098 (2015)

    Article  Google Scholar 

  2. E. Haglund, P. Westbergh, J. Gustavsson, E. Haglund, A. Larsson, High-speed VCSELs with strong confinement of optical fields and carriers. J. Lightw. Technol. 34(2), 269–277 (2016)

    Article  Google Scholar 

  3. S.T.M. Fryslie, M.P. Tan, D.F. Siriani, M.T. Johnson, K.D. Choquette, 37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays. IEEE Photonics Technol. Lett. 27(4), 415–418 (2015)

    Article  Google Scholar 

  4. S.T.M. Fryslie, and K.D. Choquette, Breakthroughs in photonics 2014: coherent vertical-cavity Surface-emitting laser arrays. IEEE Photonics J. 7(3), 0700105-1–0700105-5(2015)

    Google Scholar 

  5. H. Dalir, F. Koyama, 29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity. Appl. Phys. Lett. 103(9), 091109 (2013)

    Article  Google Scholar 

  6. F. Koyama, H. Dalir, Highly stable operations of transverse-coupled cavity VCSELs with enhanced modulation bandwidth. Electron Lett. 50(11), 823–824 (2014)

    Article  Google Scholar 

  7. P. Moser, W. Hofmann, P. Wolf, J.A. Lott, G. Larisch, A. Payusov, N.N. Ledentsov, D. Bimberg, 81 fJ/bit energy-to-data ratio of 850-nm vertical-cavity surface-emitting lasers for optical interconnects. Appl. Phys. Lett. 98(23), 231106 (2011)

    Article  Google Scholar 

  8. P. Moser, J.A. Lott, G. Larisch, D. Bimberg, Impact of the oxide-aperture diameter on the energy-efficiency, bandwidth, and temperature stability of 980 nm VCSELs. J. Lightw. Technol. 33(4), 825–831 (2015)

    Article  Google Scholar 

  9. C.E. Shannon, Communication in the presence of noise, in Proceeding of IRE, vol. 37, no. 1 (1949), pp. 10–21

    Google Scholar 

  10. F.R. Yu, X. Zhang, V. Leung, Green Communications and Networking (CRC Press, Florida, USA, 2012)

    Google Scholar 

  11. P. Moser, Energy-Efficient VCSELs for Optical Interconnects (Springer, Berlin, Heidelberg, 2016)

    Book  Google Scholar 

  12. L.A. Coldren, S.W. Corzine, Dynamic effects, in Diode Lasers and Photonic Integrated Circuits, ed. by K. Chang (Wiley, New York, 1995), pp. 185–213

    Google Scholar 

  13. P. Moser, J.A. Lott, D. Bimberg, Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quantum Electron 19(4), 1702212-1–1702212-12 (2013)

    Google Scholar 

  14. T.R. Chen, B. Zhao, L. Eng, Y.H. Zhuang, J. O’Brien, A. Yariv, Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers. Electron Lett. 29(17), 1525–1526 (1993)

    Article  Google Scholar 

  15. B.M. Hawkins, R.A. Hawthorne, J.K. Guenter, J.A. Tatum, J.R. Biard, Reliability of various size oxide aperture VCSELs, in Proceeding of IEEE 52nd Electronic Components and Technology Conference, 28–31, San Diego, USA, CA (2002), pp. 540–550

    Google Scholar 

  16. P. Moser, P. Wolf, G. Larisch, H. Li, J.A. Lott, D. Bimberg, Energy-efficient oxide-confined high-speed VCSELs for optical interconnects, in Proceeding of SPIE 9001, Vertical-Cavity Surface-Emitting Lasers XVIII, 7–12 Feb 2014, San Francisco, CA, USA, p. 900103

    Google Scholar 

  17. D.M. Kuchta, A.V. Rylyakov, C.L. Schow, J.E. Proesel, C.W. Baks, P. Westbergh, J.S. Gustavsson, A. Larsson, A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C. J. Lightw. Technol. 33(4), 802–810 (2015)

    Article  Google Scholar 

  18. K. Szczerba, P. Westbergh, M. Karlsson, P.A. Andrekson, A. Larsson, 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL. J. Lightw. Technol. 33(7), 1395–1401 (2015)

    Article  Google Scholar 

  19. P. Moser, J.A. Lott, P. Wolf, G. Larisch, H. Li, N.N. Ledentsov, D. Bimberg, 56 fJ dissipated energy per bit of oxide-confined 850-nm VCSELs operating at 25 Gb/s. Electron Lett. 48(20), 1292–1294 (2012)

    Article  Google Scholar 

  20. P. Moser, J.A. Lott, P. Wolf, G. Larisch, A.S. Payusov, N.N. Ledentsov, W. Hofmann, D. Bimberg, 99 fJ/(bit km) Energy to data-distance ratio at 17 Gb/s across 1 km of multimode optical fiber with 850-nm single-mode VCSELs. IEEE Photonics Technol. Lett. 24(1), 19–21 (2012)

    Article  Google Scholar 

  21. P. Moser, J.A. Lott, P. Wolf, G. Larisch, A. Payusov, N. Ledentsov, D. Bimberg, Energy-efficient oxide-confined 850 nm VCSELs for long distance multimode fiber optical interconnects. IEEE J. Sel. Top. Quantum Electron 1292–1294 (2012)

    Google Scholar 

  22. P. Moser, J.A. Lott, P. Wolf, G. Larisch, H. Li, D. Bimberg, 85-fJ dissipated energy Per Bit at 30 Gb/s across 500-m multimode fiber using 850-nm VCSELs. IEEE Photon Technol. Lett. 25(16), 1638–1641 (2013)

    Article  Google Scholar 

  23. P. Wolf, P. Moser, G. Larisch, H. Li, J.A. Lott, D. Bimberg, Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat. Electron Lett. 49(10), 666–667 (2013)

    Article  Google Scholar 

  24. A. Mutig, High Speed VCSELs for Optical Interconnects (Springer, Berlin, Heidelberg, 2011)

    Book  Google Scholar 

  25. H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J.A. Lott, D.H. Bimberg, Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs. IEEE J. Quantum Electron 50(8), 613–621 (2014)

    Article  Google Scholar 

  26. H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J.A. Lott, D. Bimberg, Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85 °C. Electron Lett. 50(2), 103–105 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moser, P., Lott, J.A., Bimberg, D. (2017). Energy-Efficient Vertical-Cavity Surface-Emitting Lasers for Optical Interconnects. In: Eisenstein, G., Bimberg, D. (eds) Green Photonics and Electronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67002-7_1

Download citation

Publish with us

Policies and ethics