Skip to main content

Adaptation, Complexity, and Complex Adaptive Systems

  • Chapter
  • First Online:
Energy, Information, Feedback, Adaptation, and Self-organization

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 90))

Abstract

Adaptation is inherent in all biological organisms and societal systems, and provides the means for assuring the fitness and survival of any biological species or society in a given environment. It was of primary concern by biologists and scientists over time and produced strong debates about its nature and impact on life evolution. Complexity is also an inherent property of life, human society, and technology. It is due to the interrelationship, interdependence, and connectivity of elements and entities in the interior and the environment of an organism or system. Complex Adaptive Systems (CAS) have the general properties of complex systems, but they also exhibit several higher level features. In this chapter, an overview of this field is provided including biological, hard science, soft science, and computer science issues. This chapter starts by introducing the concept of adaptation, its manifestations, and its basic properties and mechanisms. The adaptation measurement aspect is also examined. Then, the concept of “emergence”, which again is one of the most difficult philosophical concepts strongly connected with delicate questions of life existence and evolution on Earth, is examined. This chapter includes a short historical note highlighting the results and opinions of workers that have initiated and expanded the adaptation, and emergence scientific field.

Adaptation is the heart and soul of evolution.

Niles Eldredge

Expansion means complexity and complexity decay.

C. Northcote Parkinson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A. Corning, Biological adaptation in human societies: a basic needs approach. J. Bioecon. 2, 41–86 (2000)

    Article  Google Scholar 

  2. J. Huxley, Evolution the Modern Synthesis (Allen and Unwin, London, 1942)

    Google Scholar 

  3. C. Darwin, The Origin of Species (John Murray, London, 1872). http://www.sacred-texts.com/aov/darwin/origin/index.htm

  4. Reaction to Darwin’s Theory: Wikipedia. http://en.wikipedia.org/wiki/Reaction_to_Darwin’s_theory

  5. Adaptation: Wikipedia. http://en.wikipedia.org/wiki/Adaptation

  6. R. Swenson, Thermodynamics, Evolution and Behavior, in The Encyclopedia of Comparative, ed. by G. Greenberg, M. Haraway (Garland Publishers, New York, 1997). http://www.entropylaw.com/thermoevolution1.html

  7. C. Hubert, Adaptation. http://christianhubert.com/writings/adaptation.html#16

  8. P.R. Ehrlich, P.H. Raven, Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964)

    Article  Google Scholar 

  9. J. Maynard Smith, The Theory of Evolution (Penguin, New York, 1975)

    Google Scholar 

  10. T. Dobzhansky, On some fundamental concepts of evolutionary biology. Evol. Biol. 2, 1–34 (1968)

    Google Scholar 

  11. T. Dobzhansky, Genetics of the Evolutionary Process (University. of Columbia Press, N.Y., 1970), pp. 1–6, 79–82, 84–87

    Google Scholar 

  12. T. Dobzhansky, Genetics of natural populations XXV. Evolution 10, 82–92 (1956)

    Google Scholar 

  13. D.L. Hardesty, Ecological Anthropology (J. Wiley, New York, 1977)

    Google Scholar 

  14. R.C. Lewontin, Adaptation. Sci. Am. 239(3), 213–230 (1978)

    Article  Google Scholar 

  15. R.C. Lewontin, Adaptation, in Conceptual Issues in Evolutionary Biology, ed. by E. Sober (Harvard University Press, Cambridge, MA, 1984)

    Google Scholar 

  16. R. Swenson, Emergent Evolution and the Global Attractor: The Evolutionary Epistemology of Entropy Production Maximization, in Proceedings of the 33rd Annual Meeting of the International Society for the Systems Sciences, vol. 33, ed. by P. Leddington (No. 3, 1989), pp. 46–53

    Google Scholar 

  17. D.E. Koshland Jr., The seven pillars of life. Science 295, 2215–2216 (2002)

    Article  Google Scholar 

  18. R. Brandon, Adaptation and representation: the theory of biological adaptation and function. Interdisciplines. http://www.interdisciplines.org/adaptation/papers/10

  19. R. Brandon, Adaptation and Environment (Princeton University Press, Princeton, NJ, 1990)

    Google Scholar 

  20. R. Brandon, The Principle of Drift: Biology’s First Law. J. Philos. 103(7), 319–335 (1996)

    Google Scholar 

  21. L.E. Orgel, F.H.C. Crick, Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980)

    Article  Google Scholar 

  22. W.F. Doolittle, C. Sapienza, Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980)

    Article  Google Scholar 

  23. J.E. Stewart, The evolution of genetic cognition. J. Soc. Evol. Syst. 20, 53–73 (1997)

    Article  Google Scholar 

  24. J.E. Stewart, Metaevolution. J. Soc. Evol. Syst. 18, 113–147 (1995)

    Article  Google Scholar 

  25. J.E. Stewart, Evolutionary Transitions and Artificial Life. Artif. Life vol. 3 (1997)

    Google Scholar 

  26. J.E. Terrell, Adaptation. in Proceedings of the Symposium on ‘Key Concepts in Modern Evolutionary Archaeology’ (64th Annual Meeting of the Society for American Archaeology, Chicago, 1999)

    Google Scholar 

  27. B. Bogin, M.I. Vareta Silva, L. Rios, Life history trade- offs in human growth: adaptation or pathology? Am. J. Hum. Biol. 19(5), 631–642 (2007)

    Google Scholar 

  28. D.L. Hardesty, The ecological perspective in anthropology. Am. Behav. Sci. 24(1), 107–124 (1980)

    Article  Google Scholar 

  29. E.A. Smith, B. Winterherlder (eds.), Evolutionary Ecology and Human Behavior (Aldine De-Gruyter, New York, 1992)

    Google Scholar 

  30. E.E. Ruyle, Genetic and cultural pools: some suggestions for a unified theory of biological evolution. Hum. Ecol. 1, 201–215 (1973)

    Article  Google Scholar 

  31. R. Naroll, The Moral Order: An Introduction to the Human Situation (Sage Publications, Beverly Hills, CA, 1983)

    Google Scholar 

  32. B. Colby, Well-being: a theoretical paradigm. Am. Anthropol. 89, 879–895 (1987)

    Article  Google Scholar 

  33. J. Rawls, A Theory of Justice (Harvard University Press, Cambridge, MA, 1972)

    Google Scholar 

  34. A.K. Sen, Welfare and Measurement (The MIT Press, Cambridge, MA, 1982)

    MATH  Google Scholar 

  35. B. World, Social Indicators of Development (The John Hopkins University Press, Baltimore, 1996)

    Google Scholar 

  36. J.H. Holland, Hidden Order: How Adaptation Builds Complexity (Addison Wesley, Reading, MA, 1995)

    Google Scholar 

  37. J.H. Holland, Complex adaptive systems. Daedalus 121, 17–30 (1992)

    Google Scholar 

  38. J. Brownlee, Complex adaptive systems. CIS Tech. Report 070302A, 1–6 (2007)

    Google Scholar 

  39. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence (MIT Press, Cambridge, MA, 1975)

    MATH  Google Scholar 

  40. J.H. Holland, Emergence: From Chaos to Order (Addison-Wesley, Redwood City, Calif, 1998)

    MATH  Google Scholar 

  41. M.M. Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, New York, 1992)

    Google Scholar 

  42. I. Prigogine, I. Stengers, Order Out of Chaos (Bantam Books, New York, 1984)

    Google Scholar 

  43. E. Jantsch, The Self—Organizing Universe (Pergamon Press, Oxford, 1980)

    Google Scholar 

  44. H. Maturana, F. Varela, The Tree of Knowledge (Shambhala, Boston, 1992)

    Google Scholar 

  45. K. Dooley, A nominal definition of complex adaptive systems. Chaos Netw. 8(1), 2–3 (1996)

    Google Scholar 

  46. J.C. Maxwell, Teaching Nonlinear Phenomena (King’s College, London, 1873)

    Google Scholar 

  47. C.L. Morgan, The case of emergent evolution. J. Philos. Stud. 4(15), 431–432 (1929)

    Google Scholar 

  48. E.N. Lorenz, Deterministic non-periodic flow. J. Atmos. Sci. 20(3), 448–464 (1963)

    Article  Google Scholar 

  49. L. von Bertalanffy, The History and status of general systems theory. Acad. Manag. J. Gen. Syst. Theory 15(4), 407–426 (1972)

    Google Scholar 

  50. J.H. Holland, J.S. Reitman, Cognitive Systems Based on Adaptive Algorithms. in Pattern-Directed Inference Systems, eds. by D.A. Waterman, F. Haynes, Roth (Academic Press, New York, 1978)

    Google Scholar 

  51. R.M. May, Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  MATH  Google Scholar 

  52. G. Nicolis, I. Prigogine, Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1978)

    MATH  Google Scholar 

  53. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977)

    Google Scholar 

  54. R.L. Ackoff, The Art of Problem Solving (Wiley, New York, 1978)

    Google Scholar 

  55. R.L. Ackoff, Some unsolved problems in problem solving. Oper. Res. Q. 13, 1–11 (1962)

    Article  Google Scholar 

  56. M. Smith, Evolution and Theory of Games (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  57. R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, Redwood City, CA, 1986)

    MATH  Google Scholar 

  58. T.S. Parker, L.O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  59. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989)

    MATH  Google Scholar 

  60. C.G. Langton, Computation at the edge of chaos: phase transitions and emergent computation. Physica D 12–37 (1990)

    Google Scholar 

  61. N.K. Hayles, Chaos Bound: Orderly Disorder in Contemporary Literature and Science (Cornell University Press, Ithaca, NY, 1991)

    Google Scholar 

  62. S.A. Kauffman, Antichaos and adaptation. Sci. Am. 265, 78–84 (1991)

    Article  Google Scholar 

  63. R. Lewin, Complexity: Life at the Edge of Chaos (MacMillan, New York, 1992)

    Google Scholar 

  64. R.L. Devaney, A First Course in Chaotic Dynamical Systems (Addison-Wesley, Reading, MA, 1992)

    MATH  Google Scholar 

  65. M. Mitchell, P.T. Hraber, J.P. Crutchfield, Revising the edge of chaos: evolving cellular automata to reform computations. Complex Syst. 7, 89–130 (1993)

    MATH  Google Scholar 

  66. S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, New York, 1993)

    Google Scholar 

  67. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  68. K. Kelly, Out of Control: The New Biology of Machines, Social Systems and the Economic World (Addison-Wesley, Boston, 1994). http://www.kk.org/outofcontrol/

  69. S. Wolfram, Cellular Automata and Complexity: Collected Papers (Perseus, Reading, MA, 1994)

    MATH  Google Scholar 

  70. S. Wolfram, A New Kind of Science (Wolfram Media, 1994). http://www.wolframsscience.com/(2004)

  71. M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex (W.H. Freeman, San Francisco, 1994)

    MATH  Google Scholar 

  72. M. Gell-Mann, What is Complexity? Complexity vol. 1 (1995)

    Google Scholar 

  73. P. Coneney, R. Highfield, Frontiers of Complexity: The Search for Order in a Chaotic World (Fawcett Columbine, New York, 1995)

    Google Scholar 

  74. H.J. Morowitz, J.L. Singer, The Mind, The Brain, and Complex Adaptive Systems (Addison Wesley-Longman, Reading, MA, 1995)

    Google Scholar 

  75. B. Per, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996)

    MATH  Google Scholar 

  76. L.A. Fitzerald, Organizations and Other Things Fractal: A Primer on Chaos for Agent of Change (The Consultancy, Denver, CO, 1996)

    Google Scholar 

  77. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA, 1996)

    MATH  Google Scholar 

  78. F. Heylighen, What is Complexity, Brussels, Free University (1996). http://pcp.lanl.gov/HEYL.html2004

  79. C. Langton, Modeling Complex Adaptive Systems (1997). http://www.anderson.ucla.edu/research/marschak/1997-98/abstracts/31oct97.htm

  80. Y. Bar-Yam, Dynamics of Complex Systems (Perseus Books, Reading Mass, 1997)

    MATH  Google Scholar 

  81. K. Sigmund, Complex adaptive systems and the evolution of reciprocation. Ecosyst. Biomed. Life Sci. Earth Environ. Sci. 1, 444–448 (1998)

    Google Scholar 

  82. E. Bonabeau, Social insect colonies as complex adaptive systems. Ecosyst. Biomed. Life Sci. Earth Environ. Sci. 1, 427–430 (1998)

    Google Scholar 

  83. P. Cilliers, Complexity and Postmodernism: Understanding Complex Systems (Routledge, London, 1998)

    Google Scholar 

  84. M.R. Lissack, Managing the Complex: Mastering Corporate Complexity. Doing It, Not Just Talking About It: The Role of Coherence. in Proceedings of the Annual Colloq. on Complex Systems and the Management of Organizations (NESCI, Boston, March 1999). http://www.learning.org.com/98.11/0314.html

  85. L.A. Segel, Diffuse feedback from diffuse information in complex systems. Complexity 5, 39–46 (2000)

    Article  Google Scholar 

  86. M. Buchanan, Ubiquity: Why Catastrophes Happen? (Three River Press, New York, 2000)

    Google Scholar 

  87. R.M. Smith, M.A. Bedau, Is echo a complex adaptive system? Evol. Comput. 8, 419–422 (2000)

    Article  Google Scholar 

  88. Y. Bar-Yam (ed.), Unifying Themes in Complex Systems I. in Proceedings of the 1st International Conference on Complex Systems (Perseus Press, New York, 2000)

    Google Scholar 

  89. R.K. Sawyer, Emergence in Sociology: Contemporary Philosophy of Mind and Some Implications for Sociological Theory: 1. Am. J. Sociol. 107(3), 551–585 (2001)

    Google Scholar 

  90. D. Harris, Echo Implemented: A Model for Complex Adaptive Systems Computer Experimentatation (Sandia National Labs, USA, SAND, 2001), pp. 2001–2097

    Book  Google Scholar 

  91. Y. Bar-Yam, A. Minai (eds.), Unifying Themes in Complex Systems II. in Proceedings of the 2nd International Conference on Complex Systems (Perseus Press, New York, 2002)

    Google Scholar 

  92. S.A. Lewin, Complex adaptive systems: exploring the known and the unknowable. Am Math. Soc. 40, 3–19 (2003)

    MathSciNet  Google Scholar 

  93. S. Harkema, A complex adaptive perspective on learning within innovation projects. Learn. Organ. 10(6), 340–346 (2003)

    Article  Google Scholar 

  94. R.L. Goldstone, Y. Sakamoto, The transfer of abstract principles governing complex adaptive systems. Cogn. Psychol. 46, 414–446 (2003)

    Article  Google Scholar 

  95. S. Bullock, D. Cliff, Complexity and Emergent Behavior in ICT Systems. Hewlett-Packard Labs HP-2004-187 (2004). http://www.hpl.hp.com/techreports/2004/HPL-2004-187.html

  96. L.M. Holden, Complex adaptive systems: concept analysis. J. Advanced Nurs. 52, 651–657 (2005)

    Article  Google Scholar 

  97. R. Harre, Resolving the emergence-reduction debate. Synthése 151(3), 499–504 (2006)

    Google Scholar 

  98. S. Kauffman, P. Clayton, On emergence, agency, and organization. Biol. Philos. 21(4), 501–521 (2006)

    Article  Google Scholar 

  99. L. Von Bertalanfly, General Systems Theory: Foundations, Development, Applications (George Braziller, New York, 1968)

    Google Scholar 

  100. H. Liu, A Brief History of the Concept of Chaos (Peking University, Department of Philosophy, Peking, 1999). http://members.tripod.com/~haaje/Paper/chaos.htm

  101. A.N. Kolmogorov, On Stability of Conditionally Periodic Motions in Conservative Dynamical Systems (Proceedings of the International Congress of Mathematicians, Amsterdam, 1954)

    Google Scholar 

  102. V.I. Arnold, Proof of a Theorem of A.N. kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the hamiltonian, uspehy math. Mark 18(5), 13–40 (1963) [Translation to English in: Russian Mathematical Surveys, vol. 18, 9–36 (1963)]

    Google Scholar 

  103. J.K. Moser, On invariant curves of area-preserving mappings of an annulus. Courant Inst. Math. Sci. Math. Phys. K1.II, (New York, University 1962), 1–20

    Google Scholar 

  104. T. Vincent-Walter, J. Grantham, Non Linear and Optimal Control Systems (Wiley, New York, 1997)

    Google Scholar 

  105. S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison Wesley, Reading, MA, 1994)

    Google Scholar 

  106. E. Stepp, Fractal Frequently Asked Questions and Answers (Marshall University, Huntington, WV, 1995). http://www.faqs.org/faqs/fractal-faq/

  107. M. Baranger, Chaos, Complexity, and Entropy: A Physics Talk for Non-Physicists (Center for Theoretical Physics, Department of Physics, MIT, Cambridge, MA, U.S.A., 2002). http://necsi.org/projects/bouranger/cce.pdf

  108. D.W. Hock, in The Chaotic Organization: Out of Control and Into Order, 21st Century Learning Initiative (1996)

    Google Scholar 

  109. L.A. Fitzerald, What is Chaos? Denver. http://www.orgmind.com/whatis.html

  110. Cooperative Versus Competitive Games, Ed. Games http://thegamesjournal.com/articles/FamilyPastmes.shtml

  111. C. Montet, Game Theory and Economics (Palgrave Macmillan, London, 2003)

    Book  Google Scholar 

  112. M.R. Lissack, J. Roos, The Next Common Sense: Mastering Corporate Complexity through Coherence (Nicholas Brealcy, London, 1999)

    Google Scholar 

  113. S. Lloyd, Measures of complexity: a non-exhaustive list. IEEE Control Syst. Magaz. 71(4), 7–8 (2001)

    Article  Google Scholar 

  114. S. Alexander, Space, Time and Deity, vol. I, II (Macmillan, London, 1920)

    Google Scholar 

  115. C.L. Morgan, Emergent Evolution (Williams and Norgate, London, 1923)

    Google Scholar 

  116. C. Nino El-Hami, S. Pihlstrom, Emergence Theories and Pragmatic Realism. http://www.helsinki.fi/science/commens/papers/emergentism.pdf

  117. C.D. Broad, The Mind and Its Place to Nature (Loutledge and Kegem Paul, London, 1925)

    Google Scholar 

  118. S.C. Pepper, Emergence. J Philos. 23, 241–245 (1926)

    Article  Google Scholar 

  119. P.E. Meehl, W. Sellars, The Concept of Emergence, In Minnesota Studies in the Philosophy of Science: Vol.I, The Foundations of Science and the Concepts of Psychology and Psychoanalysis, eds. by H. Fregl, M. Soriven (University of Minnesota Press, Minnesota, 1956), 239–252

    Google Scholar 

  120. J.P. Crutchfield, The calculi of emergence: computation. Dyn. Induction, Physica, D 75, 11–54 (1994)

    Article  MATH  Google Scholar 

  121. E. Pessa, What is Emergence? in Emergence in Complex, Cognitive, Social, and Biological Systems, eds. by G. Minati, E. Pessa (Kluwer/Plenum, New York, 2002)

    Google Scholar 

  122. C. Hzyksan, J.B. Zuber, Quantum Field Theory (McGraw-Hill, Singapore, 1986)

    Google Scholar 

  123. T. O’Connor, H.Y. Wong, Emergent properties. Stanford Encycl. Philos. (October 23, 2006). http://plato.stanford.edu/entries/proprerties-emergent/

  124. T. O’Connor, Causality, mind and free will. Philos. Perspect. 14, 105–117 (2000)

    Google Scholar 

  125. A. Matthies, A. Stephenson, N. Tasker, The Concept of Emergence in Systems Biology. A Project Report. http://www.stats.ox.ac.uk/_data/assets/pdf_file/0018/3906/Concept_of_Emergence.pdf

  126. J. Kim, Being Realistic About Emergence. in The Re-Emergence of Emergence: The Emergentist Hypothesis from Science to Religion, eds. by P. Clayton, P. Davies (Oxford University Press, Oxford, 2006), 189–202

    Google Scholar 

  127. U.S. Bhalla, R. Lyengar, Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999)

    Article  Google Scholar 

  128. J. Tabony, Self-organization and other emergent properties in a simple biological system of microtubules. ComPlexUs 3(4), 200–210 (2006)

    Article  Google Scholar 

  129. R.J. Fletcher, Emergent properties of conspecific attraction in fragmented landscapes. Am. Nat. 168(2), 207–219 (2006)

    Article  Google Scholar 

  130. C. Eschenbach, Emergent properties modeled with the functional structural tree growth model almis: computer experiments on resource gain and use. Ecol. Model. 186(4), 470–488 (2005)

    Article  Google Scholar 

  131. M. Christen, L. Franklin, The Concept of Emergence in Complexity Science. Proceedings of the Complex Systems Summer School, Santa Fe Institute (2002). http://www.ini.uzh.ch/node/11635

  132. P. Cariani, Emergence and Artificial Life, In Artificial Life II eds. by C. Langton, D. Farmer, S., Rasmussen (Addison-Wesley, Redwood City, CA, 1991), 775–797

    Google Scholar 

  133. S. Forrest (ed.), Emergent Computation (North Holland, Amsterdam, 1990)

    MATH  Google Scholar 

  134. A.J. Dyan, Emergence is coupled to scope. Not Level, Complex. 13, 67–77 (2007)

    Google Scholar 

  135. P. Clayton, Conceptual Foundations of Emergence Theory, Ch.1 in The-Re-emergence of Emergence: The Emergentist Hypothesis from Science to Religion, eds. by P. Clayton, P. Davies (Oxford University Press, Oxford, 2000)

    Google Scholar 

  136. P.W. Anderson, The Eightfold Way to the Theory of Complexity-A Prologue. in Complexity, Metaphors, Models, and Reality, eds. by G.A. Cowan, D. Pines, D. Meltzer (Addison-Wesley, Reading, MA, 1994), 7–16

    Google Scholar 

  137. G.A. Covan, D. Pines, D. Meltzer (eds.), Complexity: Metaphors, Models, and Reality (Addison-Wesley, 1994)

    Google Scholar 

  138. L. Steels, Evolving Complex Adaptive Systems. http://arti.vub.ac.be/~steels/origin/subsection331.html

  139. F.J. Varala, H.R. Maturana, B. Uribe, Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974)

    Article  Google Scholar 

  140. E. Cantu-Paz, Efficient and Accurate Parallel Genetic Algorithms (Kluwer, Boston/Dordrecht, 2000)

    MATH  Google Scholar 

  141. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Program (Springer, Berlin/London, 1994)

    Book  MATH  Google Scholar 

  142. L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991)

    Google Scholar 

  143. S. Chan, Complex Adaptive Systems (MIT Press, Cambridge, MA, 2001)

    Google Scholar 

  144. E. Mittleton-Kelly, Organizations as Co-Evolving Complex Adaptive Systems. in Proceedings of the British Academy of Management Conference (London, Sept 1997), 8–10

    Google Scholar 

  145. R.M., Young, Mind, Brain and Adaptation in the Nineteenth Century, Cerebral Localization and its Biological Context from Gall to Ferrier (Clarendon Press, Oxford, 1970)

    Google Scholar 

  146. C.S. Pittendrigh, Adaptation, Natural Selection and Behavior. in Behavior and Evolution, eds. by A. Roe, G. Graylord Simpson (Yale Univ. Press, Yale 1958)

    Google Scholar 

  147. E. Nagel, Teleology revisited: goal directness processes in biology. J Philos. 74, 261–301 (1977)

    Article  Google Scholar 

  148. E.W. Buck Lawrimore, The new science of complexity vs. old science. Codynamics. http://www.codynamics.net/science.htm

  149. B.W. McIndoe, Complex Adaptive Thinking (JECHO References) (2008). http://brianmcindoe.com/jechoref.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros G. Tzafestas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzafestas, S.G. (2018). Adaptation, Complexity, and Complex Adaptive Systems. In: Energy, Information, Feedback, Adaptation, and Self-organization. Intelligent Systems, Control and Automation: Science and Engineering, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-66999-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66999-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66998-4

  • Online ISBN: 978-3-319-66999-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics