Skip to main content

Feedback and Control I: History and Classical Methodologies

  • Chapter
  • First Online:
Energy, Information, Feedback, Adaptation, and Self-organization

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 90))

  • 1424 Accesses

Abstract

Feedback and control, the third fundamental element of life and society, is inherent in any stable and successfully operating system in the natural, biological, technological, and societal world. It is the fundamental mechanism which assures the achievement of system equilibrium and homeostasis. Very broadly, we can say that feedback is any response or information about the result of a process which is achieved via the available sensing elements. This chapter starts with an outline of the “feedback’’ concept, illustrated by a set of biological examples, and followed by an exposition of the historical landmarks of feedback and control which includes the achievements made from the ancient times to the present. Then, an overview of the classical control methodologies is provided in a convenient simple flowing way. Specifically, the following concepts and methods are discussed with minimum mathematical detail: basic negative feedback loop, stability, time domain specifications, root locus, Nyquist, Bode and Nichols plots, frequency-domain specifications and stability criteria, compensator design in the time and frequency domains, and nonlinear systems analysis via the describing functions and phase-plane concepts. Actually, this chapter offers a good review of the field which allows the reader to see the role of feedback as a pillar of life and society, and can be used as a quick reference source for all scientists interested in the field of feedback and classical control.

Evolution is chaos with feedback.

Joseph Ford

Real meditation is not about mastering a technique; it’s about letting go of control.

Adyashanti

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine (Paris, Herman–MIT Press, Cambridge, MA, 1948)

    Google Scholar 

  2. C.H. Houpis, G.B. Lamont, Digital Control Systems: Theory, Hardware, Software (McGraw-Hill, New York, 1992)

    Google Scholar 

  3. R. Isermann, Digital Control Systems, vol. 1: Fundamentals, Deterministic Control (Springer, Berlin, 1989)

    Google Scholar 

  4. P. Katz, Digital Control Using Microprocessors (Prentice-Hall, London, 1981)

    Google Scholar 

  5. R.C. Dorf, R.H. Bishop, Modern Control Systems, 7th edn. (Addison-Wesley, Reading, MA, 1995)

    MATH  Google Scholar 

  6. J.J. DiStefano III, A.R. Stubberud, I.J. Williams, Theory and Problems of Feedback Control Systems Design (McGraw-Hill, New York, 1990)

    Google Scholar 

  7. A.C. Guyton, Textbook of Medical Physiology (W.B. Saunders, Philadelphia, 1991)

    Google Scholar 

  8. A.D. Brown, Feed or Feedback: Agriculture, Population Dynamics and the State of the Planet (International Books, Tuross Head, NWS, Australia, 2003)

    Google Scholar 

  9. O. Mayr, The Origins of Feedback Control (MIT Press, Cambridge, MA, 1970)

    MATH  Google Scholar 

  10. S. Bennett, A brief history of automatic control, IEEE Control Syst. Mag., 17–25 (1996)

    Google Scholar 

  11. C.C. Bissel, Secondary sources for the history of control engineering: an annotated bibliography. Int. J. Control 54, 517–528 (1991)

    Article  MathSciNet  Google Scholar 

  12. A.V. Khramoi, History of Automation in Russia before 1917, Moscow 1956, English Translation, Jerusalem, 1969

    Google Scholar 

  13. O. Mary, James Clerk Maxwell and the origins of cybernetics. ISIS 62, 425–444 (1971)

    Article  Google Scholar 

  14. F.L. Lewis, A brief history of feedback control, chapter 1, in: Applied Optimal Control and Estimation (Prentice-Hall, Upper Saddle River, NJ, 1992)

    Google Scholar 

  15. S. Benner, A History of Control Engineering 1930-1955 (Peter Peregrinus, Stevenage, 1993)

    Google Scholar 

  16. S. Bennet, A History of Control Engineering 1800-1930 (Peter Peregrinus, 1979) (Reprinted 1986)

    Google Scholar 

  17. R. Belmann, Dynamic Programming (Princeton University Press, New Jersey, 1957)

    Google Scholar 

  18. L.S. Pontryagin, V.G. Boltyansky, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes (Wiley, New York, 1962)

    Google Scholar 

  19. R.E. Kalman, On the general theory of control systems, in Proceeding of 1st IFAC Congress, Moscow, vol. 1 (Butterworth, London, pp. 481–492, 1960)

    Google Scholar 

  20. R.E. Kalman, A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82, 34–45 (1960)

    Google Scholar 

  21. R.E. Kalman, J.E. Bertram, Control system analysis and design via the “second method” of Lyapunov, (I) continuous-time systems, Trans. ASME J. Basic Eng., 371–393 (1960)

    Google Scholar 

  22. J.P. Lasalle, Some extensions of Lyapunov’s second method. IRE Trans. Circ. Theory 7, 520 (1960)

    Article  Google Scholar 

  23. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. ASME J. Basic Eng. 80, 193–196 (1961)

    Google Scholar 

  24. M. Athans, P. Falb, Optimal Control (McGraw-Hill, New York, 1966)

    MATH  Google Scholar 

  25. F.S. Asl, M. Athans, A. Pascoal, Issues, progress and new results in robust adaptive control. J. Adapt. Control Signal Process. 20, 519–579 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. V.M. Popov, Absolute stability of nonlinear system of automatic control. Autom. Remote Control 22(8), 857–875 (1961)

    MathSciNet  MATH  Google Scholar 

  27. I.W. Sandberg, A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element. Bell. Syst. Tech. J. 43(4), 1601–1608 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  28. K.S. Narendra, A. Goldwyn, A geometrical criterion for the stability of certain nonlinear nonautonomous systems, IEEE Trans. Circ. Theory CT-11(3), 406–407 (1964)

    Google Scholar 

  29. C.A. Desoer, A generalization of the Popov criterion, IEEE Trans. Autom. Control AC-10(2), 182–185 (1965)

    Google Scholar 

  30. C.S. Draper, Bid for space 1961, MIT and project Apollo, MIT Institute Archives & Special Collections http://libraries.mit.edu/archives/exhibits/apollo/

  31. K.S. Fu, Learning control systems-review and outlook, IEEE Trans. Autom. Control AC-15, 210–221 (1970)

    Google Scholar 

  32. K.S. Fu, Learning control systems and intelligent control systems: an intersection of artificial intelligence and automatic control, IEEE Trans Autom. Control AC-16(2), 70–72 (1971)

    Google Scholar 

  33. K.S. Fu, Syntactic Pattern Recognition and Applications (Prentice-Hall, Englewood Cliffs, 1982)

    MATH  Google Scholar 

  34. H. Haddad, G.C. Lee, GoS guided bandwidth management in differentiated time scales. J. Optimiz. Theory Appl. 115, 517–547 (2002)

    Article  MATH  Google Scholar 

  35. C.I. Harris, C.G. Moore, M. Brown, Intelligent Control: Aspects of Fuzzy Logic and Neural Nets (World Scientific, Singapore, 1993)

    Book  MATH  Google Scholar 

  36. M. Brown, C.J. Harris, Neuro-Fuzzy Adaptive Modeling and Control (Prentice Hall, New Jersey, 1984)

    Google Scholar 

  37. G.N. Saridis, T.K. Dao, A learning approach to the parameter-adaptive self-organizing control problem. Automatica 8, 589–597 (1972)

    Article  MATH  Google Scholar 

  38. G.N. Saridis, Analytic formulation of the principle of increasing precision with decreasing intelligence for intelligent machines. Automatica 25(3), 461–467 (1989)

    Article  MATH  Google Scholar 

  39. H.H. Rosenbrock, G.E. Hayton, Dynamical indices of a transfer function matrix. Int. J. Control 20, 177–189 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. H.H. Rosenbrock, State Space Multivariable Theory (Wiley, New York, 1970)

    MATH  Google Scholar 

  41. G.F. Franklin, J.D. Powell, A. Emani-Naeini, Feedback Control of Dynamic Systems (Addison-Wesley, Reading, MA, 1994)

    Google Scholar 

  42. E.I. Jury, Theory and Application of the Z-Transform, Method (Wiley, New York, 1964)

    Google Scholar 

  43. E.I. Jury, Sampled Data Control Systems (Wiley, New York, 1958)

    MATH  Google Scholar 

  44. E.I. Jury, Stability of multidimensional systems and related problems, chapter 3, in: Multidimensional Systems: Techniques and Applications (S.G. Tzafestas, ed.) (Marcel Dekker, New York/Basel, 1986)

    Google Scholar 

  45. I. Horowitz, Synthesis of Feedback Systems (Academic Press, New York, 1963)

    MATH  Google Scholar 

  46. I. Horowitz, M. Sidi, Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerances. Intl. J. Control 16(2), 287–309 (1972)

    Article  MATH  Google Scholar 

  47. I. Horowitz, Quantitative feedback theory, Proc. IEE, 129(Part D, No. 6), 215–226 (1982)

    Google Scholar 

  48. C.H. Houpis, M. Pachter, Application of QFT to control system design: for engineers. Int. J. Robust Nonlinear Control 7(6), 561–580 (1997)

    Article  MATH  Google Scholar 

  49. C.H. Houpis, G.B. Lamont, Digital Control Systems: Theory, Hardware, Software (McGraw-Hill, New York, 1992)

    Google Scholar 

  50. C.H. Houpis, S.I. Rasmussen, Quantitative Feedback Theory: Fundamentals and Applications (Marcel Dekker New York, 1999)

    Google Scholar 

  51. A.G.J. MacFarlane, The development of frequency—response methods in automatic control, IEEE Trans. Autom. Control AC-24, 250–265 (1979)

    Google Scholar 

  52. A.G.J. MacFarlane, I. Postlethwaite, The generalized Nyquist stability criterion and multivariable root loci. Int. J. Control 25, 81–127 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  53. I. Postlethwaite, A.G.J. MacFarlane, A Complex Variable Approach to the Analysis of Linear Multivariable Feedback Systems (Springer, Berlin, 1979)

    Book  MATH  Google Scholar 

  54. M.G. Safonov, Stability Margins of Diagonally Perturbed Multivariable Feedback Systems, IEE Proc. 129-D, 251–256 (1982)

    Google Scholar 

  55. M.G. Safonov, J. Doyle, Minimizing Conservativeness of Robust Singular Values, in: Multivariable Control (S.G. Tzafestas, ed), (D. Reidel, Dordrecht, 1984)

    Google Scholar 

  56. K.J. Aström, B. Wittenmark, Self-tuning controllers based on pole-zero placement. Proc. IEE, Part D 127, 120–130 (1980)

    Article  Google Scholar 

  57. K.J. Aström, P. Hagander, J. Sternby, Zeros of sampled systems. Automatica 20, 31–38 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  58. K.J. Aström, B., Wittenmark, Adaptive Control (Addison-Wesley, Reading, MA, 1989)

    Google Scholar 

  59. K.J. Aström, B. Wittenmark, Problems of Identification and Control. J. Math Anal. Appl. 34, 90–113 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Kwakernaak, Optimal Filtering in Linear Systems with Time Delays, IEEE Trans. Autom. Control AC-12, 169–173 (1967)

    Google Scholar 

  61. H. Kwakernaak, Robust control and H: optimization. Automatica 29, 255–273 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  62. H. Kwakernaak, R. Sivan, Linear Optimal Control Systems (Wiley, New York, 1972)

    MATH  Google Scholar 

  63. J.S. Meditch, Orthogonal projection and discrete optimal linear smoothing. SIAM J. Control 5, 74–89 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  64. J.S. Meditch, On optimal linear smoothing theory. Inf. Control 10, 598–615 (1967)

    Article  MATH  Google Scholar 

  65. J.S. Meditch, Stochastic Optimal Linear Estimation and Control (McGraw-Hill, New York, 1969)

    MATH  Google Scholar 

  66. I.D. Landau, Adaptive Control: The Model Reference Approach (Marcel-Dekker, New York, 1979)

    MATH  Google Scholar 

  67. I.D. Landau, From robust control to adaptive control. Control Eng. Pract. 7(10), 1113–1124 (1997)

    Google Scholar 

  68. I.D. Landau, R. Lozano, M. M’Saad, Adaptive Control (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  69. K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  70. K.S. Narendra, A. Annaswamy, Stable Adaptive Systems (Prentice-Hall, NJ, 1989)

    MATH  Google Scholar 

  71. J.-J.E. Slotine, J.A. Coetsee, Adaptive sliding controller synthesis for nonlinear systems. Int. J. Control 43, 1631–1651 (1986)

    Article  MATH  Google Scholar 

  72. J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, N.J., 1991)

    MATH  Google Scholar 

  73. G. Zames, On the input-output stability of time-varying non-linear feedback systems, part I: conditions derived using concepts of loop gain, conicity, and positivity, IEEE Trans. Autom. Control, AC-11(2), 228–238 (1966), Part II: conditions involving circles in the frequency plane and sector nonlinearities, IEEE Trans. Autom. Control, AC-11(3), 465–476 (1966)

    Google Scholar 

  74. G. Zames, Feedback and optimal sensitivity: model reference transformations multiplicative semi-norms and approximate inverses, IEEE Trans. Autom. Control AC-26, 301–320 (1981)

    Google Scholar 

  75. G. Zames, N.A. Shneydor, Structural stabilization and quenching by dither in nonlinear systems, IEEE Trans. Autom. Control, AC-22(3), 352–361 (1977)

    Google Scholar 

  76. A.L. Fradkov, I.V. Miroshnik, V.O. Nikiforok, Nonlinear and Adaptive Control of Complex Systems (Springer, Berlin, 2007)

    Google Scholar 

  77. A. Astolfi, Towards Applied Nonlinear Adaptive Control, in Proceedings of the IFAC Workshop on Adaptation Learning in Control and Signal Processing (St. Petersburg, Russia, 2007)

    Google Scholar 

  78. J.J. D’Azzo, C.H. Houpis, Feedback Control System Analysis and Synthesis, 2nd edn. (McGraw-Hill, New York, 1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros G. Tzafestas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzafestas, S.G. (2018). Feedback and Control I: History and Classical Methodologies. In: Energy, Information, Feedback, Adaptation, and Self-organization. Intelligent Systems, Control and Automation: Science and Engineering, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-66999-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66999-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66998-4

  • Online ISBN: 978-3-319-66999-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics