Skip to main content

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 90))

  • 1467 Accesses

Abstract

Broadly speaking, thermodynamics is the study of the relation of heat and other forms of energy (mechanical, electrical, radiant, etc), and the conversion of one form to another, as well as their relation to matter in the Universe. This chapter gives an overview of the major concepts, laws, and branches of thermodynamics that have been developed and studied over the years since the Carnot times. Specifically, this chapter defines the basic physical concepts of thermodynamics, with emphasis on the fundamental concept of entropy, and presents the four laws of thermodynamics. Particular aspects studied are the entropy interpretations (unavailable energy, disorder, energy dispersal, opposite to potential), the Maxwell demon, and the types of arrow of time (psychological, thermodynamic, cosmological, quantum, electromagnetic, causal, and helical arrows). This chapter ends with a number of seminal quotes on thermodynamics, entropy, and life that express the opinions of the founders and other eminent contributors and thinkers in the thermodynamics field.

The law that entropy always increasesthe second law of thermodynamicsholds, I think, the supreme position among the laws.

Arthur Stanley Eddington

My position is perfectly definite. Gravitation, motion, heat, light, electricity, and chemical action are one and the same object in various forms of manifestation.

Julius Robert Mayer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    †A complex-valued matrix A is called Hermitian (or self-adjoint) if A H = A, where A H is a matrix with elements the conjugate elements of the transpose matrix A T.

  2. 2.

    *In the one-dimensional case, H is given by \(H = - (\hbar^{2} /2m)\partial^{2} /\partial x^{2} + V(x)\) where, V(x) is the time-independent potential energy of the particle at position x.

References

  1. W.T. Kelvin, An account of Carnot’s theory of the motive power of heat. Trans. Edimburgh R. Soc. XVI (Jan. 2) (1849)

    Google Scholar 

  2. D.S.L. Cardwell, From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age (Heinemann, London, 1971)

    Google Scholar 

  3. P. Perrot, A to Z of Thermodynamics (Oxford University Press, Oxford, 1998)

    Google Scholar 

  4. P. Atkins, Four Laws that Drive the Universe (Oxford University Press, Oxford, 2007)

    Google Scholar 

  5. Y. Cengel, M. Boles, Thermodynamics: An Engineering Approach (Mc Graw Hill, New York, 2002)

    Google Scholar 

  6. J. Dunning-Davies, Concise Thermodynamics: Principles and Applications (Horwood Publishing, Chichester, 1997)

    Google Scholar 

  7. H.A. Buchdahl, The Concepts of Classical Thermodynamics (Cambridge University Press, London, 1966)

    MATH  Google Scholar 

  8. R. Giles, Mathematical Foundations of Thermodynamics (Pergamon, Oxford, 1964)

    MATH  Google Scholar 

  9. W.M. Haddad, V.S. Chellaboina, S.G. Nerserov, Thermodynamics (Princeton University Press, Princeton, 2005)

    Google Scholar 

  10. E.P. Gyfropoulos, G.P. Beretta, Thermodynamics: Foundations and Applications (Dover Publications, Mineola, 2005)

    Google Scholar 

  11. R. Clausius, The Mechanical Theory of Heat with its Applications to Steam Engines and to Physical Properties of Bodies (John Van Voorst, London, 1865)

    Google Scholar 

  12. C. Caratheodory, Investigation into the foundations of thermodynamics (English Translation from Math. Ann., Vol. 67, pp. 355–386, 1908), in The Second Law of Thermodynamics ed. by J. Kestin (Hutchinson and Ross, Dowden, 1976), pp. 229–256

    Google Scholar 

  13. G.N. Lewis, M. Randall, Thermodynamics (revised by K.S. Pitzer and L. Brewer) (Mc Graw Hill, New York, 1961)

    Google Scholar 

  14. E. Fermi, Thermodynamics (Dover Publications, New York, 1956)

    MATH  Google Scholar 

  15. E. Mendoza, Reflections on the Motive Power of Fire—and Other Papers on the Second Law of Thermodynamics by E (Clapeyron and R Clausius (Dover Publications), Mineola, 1998)

    Google Scholar 

  16. L. Boltzmann Lectures on Gas Theory (University of California Press, Berkeley, (1896), 1964) (English Translation from Vorlesungen über Gas theorie, Leipzig 1895/98 UB: 05262 by S.G. Brush (1964), Republished by Dover Publications, New York, 1995)

    Google Scholar 

  17. J.C. Maxwell, Theory of Heat, (Longmans, Green and Co., New York, (1888), Reprinted by Dover Publications, New York, 2001)

    Google Scholar 

  18. Boltzmann Equation http://scienceworld.wolfram.com/physics/BoltzmannEquation.html

  19. J. Von Neumann, Mathematical Foundations of Quantum Mechanics (Mathematische Grundlagen der Quantenmechanik) (Springer, Berlin, 1955)

    MATH  Google Scholar 

  20. Encyclopedia of Human Thermodynamics (a) http://www.eoht.info/page.system (b) http://www.eoht.info/page/boundary (c) http://www.eoht.info/page/Universe (d) http://www.eoht.info/page/Branches+of+thermodynamics

  21. About.com physics, http://physics.about.com/od/thermodynamics/f/thermoprocess.htm http://physics.about.com/od/glossary/g/isothermal.htm http://physics.about.com/od/glossary/g/isochoric.htm

  22. Adiabatic Processes, http://hyperphysics.phy-astr.gsu.edu/Hbase/thermo/adiab.html

  23. Entropy. http://srikant.org/core/node9.html

  24. Some Tools of Thermodynamics, http://www.chem.arizona.edu/~salzmanr/480a/480ants/ageq&max/ageq&max.html

  25. The State of a System, http://www.chem.arizona.edu/~salzmanr/480a/480ants/chemther.html

  26. S.R. Berry, Understanding Energy, Entropy, and Thermodynamics for Everyman (World Scientific, Singapore, 1991)

    Book  Google Scholar 

  27. Calorimetry, http://www.chem.ufl.edu/~itl/2045/lectures/lec_9.html http://www.science.uwaterloo.ca/~cchieh/cact/c120/calorimetry.html http://www.answers.com/topic/calorimetry

  28. G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics, Part I, postulates. Found. Physics 6(1), 15–31, 1976; Part II A available energy, ibid, Vol. 6(2), 127–141, 1976; Part IIB Stable equilibrium states, ibid, Vol. 6(4), pp. 439–455, 1976; Part III, Irreducible quantal dispersions, ibid, 6(5), 561–570 (1976)

    Google Scholar 

  29. E.P. Gyftopoulos, Thermodynamic definition and quantum—theoretic pictorial illustration of entropy. ASME Trans. J. Energy Resour. Tech. 120, 154–160 (1998)

    Article  Google Scholar 

  30. E.P. Gyftopoulos, E. Cubucku, Entropy: thermodynamic definition and quantum expression. Phys., Rev. E. 55(4), 3851–3858 (1995)

    Google Scholar 

  31. G.P. Berreta, E.P. Gyftopoulos, J.L. Park, G.N. Hatsopoulos, Quantum thermodynamics: a new equation of motion for a single constituent of matter. Nuovo Cimento 82(B), 69–191 (1984)

    Google Scholar 

  32. G.P. Berreta, E.P. Gyftopoulos, J.L. Park, Quantum thermodynamics: a new equation of motion for a general quantum system. Nuovo Cimento 87(B), 77–97 (1985)

    Google Scholar 

  33. G.P. Berreta, Quantum thermodynamics of non-equilibrium: Onsager reciprocity and dispersion-dissipation relations. Found. Phys. 17, 365–381 (1987)

    Article  MathSciNet  Google Scholar 

  34. Institute of Human Thermodynamics, http://www.humanthermodynamics.com/HT-polls.html#anchor_59

  35. Entropy in the 20th Century Chemistry Texts, http://www.eoht.info/thread/3300562/Entropy+in+20th+Century+chemistry+Texts

  36. Physical meaning of entropy, http://sci.tech-archive.net/Archive/sci.physics.research/2008-11/msg00007.html

  37. K. Laider, The World of Physical Chemistry (Oxford University Press, Oxford, 1993)

    Google Scholar 

  38. J. Black, Encyclopedia Britannica (by R.G.W Anderson)

    Google Scholar 

  39. I. Muller, A History of Thermodynamics-The Doctrine of Energy and Entropy (Springer, New York, 2007)

    Google Scholar 

  40. Combined Law of Thermodynamics, http://www.calphad.com/combined_law_of_thermodynamics.html

  41. E.N. Hiebert, Historical Roots of the Principle of Conservation of Energy (Ayer Co Publ, Madison, 1981)

    MATH  Google Scholar 

  42. The Energy Story—Chapter 13—Nuclear Energy—Fission and Fusion, http://www.energyquest.ca.gov/story/chapter13.html www.aip.org/history/einstein/voice1.htm

  43. The Equivalence of Mass and Energy, http://library.thinkquest.org/3471/energy_mass_equivalence_body.html

  44. Energy, Work and Heat: The First Law, http://www.chem.arizona.edu/~salzmanr/480a/480ants/enwohe1/enwohe1.html

  45. H.S. Leff, A.F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Princeton University Press, Princeton, 1990)

    Book  Google Scholar 

  46. Entropy-General Systemics, http://www.generalsystemics.com/en/Entropy

  47. Wikibooks, http://en.wikibooks.org/wiki/Entropy_for_Beginners

  48. Wikipedia, http://en.wilipedia.org/wiki/Entropy_(statistical_thermodynamics)

  49. Renyi, On the measures of entropy and information. Proc. 4th Berkeley Symp. Math. Statist. Probl. 1, 547–561 (1961). http://digitalassets.lib.berkeley.edu/math/ucb/text/math_s4_v1_article-27.pdf

  50. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988). http://www.csc.umich.edu/~crshalizi/notabene/tsallis.html http://www.mlahanas.de/Greeks/new/Tsallis.htm

  51. D. Jiulin, Property of Tsallis entropy and principle of entropy increase. Bull. Astr. Soc. India 35, 691–696, 2007

    Google Scholar 

  52. S. Abe, Y. Okanoto, Nonextensive Statistical Mechanics and its Applications, Lecture Series Notes in Physics (Springer, Heidelberg, 2001)

    Book  Google Scholar 

  53. M. Masi, A step beyond Tsallis and Renyi entropies. Phys. Lett. A 338(3-5), 217–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. P.N. Nathie, S. Da Silva, Shannon, Lévy, C. Tsallis: A note. Appl. Math. Sci. 2(28), 1359–1363 (2008)

    Google Scholar 

  55. J. Havrda, F. Charvat, Quantification method of classification processes: concept of structural α-entropy. Kybernetika 3, 30–35 (1967)

    MathSciNet  MATH  Google Scholar 

  56. M.D. Esteban, D. Morales, A summary on entropy statistics. Kybernetika 31(4), 337–346 (1195)

    Google Scholar 

  57. H. Reichenbach, The Direction of Time, 2nd edn. (Dover Publications, New York, 1991)

    Google Scholar 

  58. H.D. Zeh, The Physical Basis of the Direction of Time, 5th edn. (Springer, Berlin, 2007)

    MATH  Google Scholar 

  59. M.W. Zemansky, R.H. Dittman, Heat and Thermodynamics (Mc Graw Hill, Singapore, 1981)

    Google Scholar 

  60. P.T. Landsberg, Thermodynamics with Quantum Statistical Illustrations (Interscience, New York, 1961)

    MATH  Google Scholar 

  61. N.N. Krasovskii, Stability of Motion, Translated by J.L. Brenner (Stanford University Press, Stanford, Calif., 1963)

    Google Scholar 

  62. A. Masim, R.U. Ayres, L.W. Ayres, An application of exergy accounting in five basic metal industries. Working Paper, INSEAD, Fontainebleau, France, May 2001 (Revision of 96/65 EPS)

    Google Scholar 

  63. Bibliography on Exergy, http://www.exergy.se

  64. W. Nernst, Studies in chemical thermodynamics. Nobel Lecture, 12 Dec 1921

    Google Scholar 

  65. Max Planck, The Theory of Heat Radiation (Springer, Berlin, 1915)

    MATH  Google Scholar 

  66. Third Law of Thermodynamics (Wikipedia). http://en.wikipedia/wiki/Third_Law_of_Thermodynamics

  67. Io HT: 15 + variations of the fourth law of thermodynamics, http://www.humanthermodynamics.com/4th-Law-Variations.html

  68. A.J. Lotka, Contribution to the energetics of evolution. Proc. N.A.S. Biol. 8, 147–151 (1922). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1085052/pdf/pnas01891%2D0031.pdf

  69. A.J. Lotka, Natural selection as a physical principle. Proc. Natl. Acad. Sci. 8, 15–154 (1922)

    Google Scholar 

  70. H.T. Odum, Limits of remote ecosystems containing man. Am. Biol. Teach. 25(6), 429–443 (1963)

    Article  Google Scholar 

  71. H.T. Odum, Ecological and General Systems: An Introduction to Systems Ecology (Colorado University Press, Niwot Colorado, 1983)

    Google Scholar 

  72. H.T. Odum, Self-organization and maximum empower, in Maximum Power: The Ideas and Applications of H.T. Odum, ed. by C.A.S. Hall, (Colorado University Press, Colorado, 1995)

    Google Scholar 

  73. M. Tribus, Generalized Treatment of Linear Systems Used for Power Production Thermostatics and Thermodynamics (Van Nostrand, New York, 1961)

    Google Scholar 

  74. H.T. Odum, R.C. Pinkerton, Times speed regulator: the optimum efficiency for maximum output in physical and biological systems. Am. Sci. 43, 331–345 (1955)

    Google Scholar 

  75. Impedance Matching, http://www.maxim-ic.com/appnotes.cfm/appnote_number/1849

  76. Atwood Machine, http://hyperphysics.phy-astr.gsu.edu/hbase/Atwd.html http://demonstrations.wolfram.com/AtwoodsMachine

  77. C. Giannantoni, Mathematics for generative processes: living and non-living systems. J. Comput. Appl. Maths. 189(1–2), 324–340 (2006)

    Article  MathSciNet  Google Scholar 

  78. Maximum Power Principle: State Master Encyclopedia, http://www.statemaster.com/encyclopedia/Maximum-power-principle

  79. T.T. Cai, T.W. Olsen, D.E. Campbell, Maximum (Em) power: a foundational principle linking man and nature. Ecol. Model. 178(1–2), 115–119 (2004)

    Article  Google Scholar 

  80. H.T. Odum, B. Odum, Concepts and methods of ecological engineering. Ecol. Eng. 20, 339–361 (2003). Available on line at www.sciencedirect.com

  81. H.T. Odum, Scales of ecological engineering. Ecol. Eng. 6(1–3), 7–19 (1996)

    Article  Google Scholar 

  82. H.T. Odum, Environment, Power, and Society for the Twenty—First Century: The Hierarchy of Energy (Columbia University Press, New York, 2007)

    Google Scholar 

  83. H.T. Odum, Environmental Accounting, Emergy and Decision Making (Wiley, NY, 1996)

    Google Scholar 

  84. L. Onsager, Reciprocal relations in irreversible processes I. Phys. Rev. 37(4), 405–426 (1931). (http://prola.aps.org/abstract/PR/v37/i4/p405_1931)

  85. L. Onsager, Reciprocal relations in irreversible processes II. Phys. Rev. 38(12), 2265–2279 (1931). (http://prola.aps.org/abstract/PR.v38/i12/p2265_1931)

  86. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland Publ. Co., Amsterdam, 1962)

    MATH  Google Scholar 

  87. P. Rysselberghe, Thermodynamics of Irreversible Processes (Herman Paris and Blaisdell Publ. Co., New York, 1963)

    MATH  Google Scholar 

  88. J. Verhas, Onsager’s reciprocal relations and some basic laws. J. Comp. Appl. Mech. 5(1), 157–163 (2004)

    MathSciNet  MATH  Google Scholar 

  89. Onsager Reciprocal Relations—Definition from Answers.com http://www.answers.com/topic/onsager-reciprocal-relations

  90. H.J. Morowitz, Energy Flow in Biology (Academic Press, New York, 1968)

    Google Scholar 

  91. H.J. Morowitz, The Facts of Life (Oxford University Press, New York/Oxford, 1992)

    Google Scholar 

  92. The Fourth Law of Thermodynamics. http://www.madsci.org (1994)

  93. What is the Fourth Law of Thermodynamics, http://madsci.org/posts/archives/2000-11/973893769.Ch.r.html (1996)

  94. S. Kauffmann, Investigations (Oxford University Press, New York/Oxford, 2000)

    Google Scholar 

  95. R.E. Morel, G. Fleck, A fourth law of thermodynamics. Chemistry 15(4), 305–310 (2006)

    Google Scholar 

  96. M. Shibi, The foundation of the fourth law of thermodynamics: Universe dark energy and its nature _ Can dark energy be generated? Proceedings of International Conference on Renewable Energies and Power Quality (Seville, Spain, 2007)

    Google Scholar 

  97. P. Carr, A proposed fifth law of thermodynamics. http://www.canadaconnects.ca/quantumphysics/100/8

  98. W. Muschik, Survey of some branches of thermodynamics. J. Non-Equilibr. Thermodyn. 33(2), 165–198 (2008)

    Article  MATH  Google Scholar 

  99. A.F. Horstmann, Theorie der dissociation. Liebigs Ann. Chemie & Pharmacie, Bd. 170 (CLXX), 192–210 (1973)

    Google Scholar 

  100. F.H. Garrison, Josiah Willard Gibbs and his relation to modern science. Popular Sci., 470–484 (1909)

    Google Scholar 

  101. W. Gibbs, On the equilibrium of heterogeneous substances. Trans. Conn. Acad. III, pp. 108–248, Oct. 1875–May 1876, and pp. 34–524, May 1877–July 1878

    Google Scholar 

  102. H. von Helmholtz, The thermodynamics of chemical operations (Die Thermodynamik Chemischer Vorgänge), in Wissenschaftiliche Abhandlungen von Hermann von Helmholtz (three volumes), ed. by J.A. Barth, Leipzig, vol. 2, (1882–95), pp. 958–978

    Google Scholar 

  103. G.N. Lewis, M. Randall, Thermodynamics and the Free Energy of Chemical Substances (McGraw-Hill, New York, 1923)

    Google Scholar 

  104. E.A. Guggenheim, Modern Thermodynamics by the Methods of Willard Gibbs, vol 8 (Taylor and Francis, London, 1933–1938)

    Google Scholar 

  105. J. Boerio-Goates, B.J. Ott, Chemical Thermodynamics: Principles and Applications (Academic Press, New York, 2000)

    Google Scholar 

  106. J.R. Howell, R.O. Buckius, Fundamentals of Engineering Thermodynamics (Mc Graw-Hill, New York, 1992)

    Google Scholar 

  107. M.J. Moran, Engineering thermodynamics, in Mechanical Engineering Handbook, ed. by F. Kreith (CRC Press, Boca Raton, 1999)

    Google Scholar 

  108. G.W. Dixon, Teaching thermodynamics without tables—Isn’t time? http://www.computer.org/portal.web/csd1/doi/10.1109/IFITA.2009

  109. S.I. Sandler, Chemical and Engineering Thermodynamics (McGraw-Hill, New York, 1989)

    Google Scholar 

  110. R.A. Alberty, Biochemical Thermodynamics: Applications of Mathematics (Wiley, New York, 2006)

    Book  Google Scholar 

  111. R.A. Alberty, Thermodynamics of Biochemical Reactions (Wiley, New Jersey, 2003)

    Book  Google Scholar 

  112. D. Lehninger, M. Nelson, Cox, Principles of Biochemistry (Worth Publishers, New York, 1993)

    Google Scholar 

  113. D. Haynie, Biological Thermodynamics (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  114. Biochemical Thermodynamics. http://www.chem.uwec.edu/Chem400_F06/Pages/lecture_notes/lect03/Atkins-Ch1.pdf

  115. Bioenergetics. http://www.bmb.leeds.ac.uk/illingworth/oxphos/physchem.htm

  116. R.A. Alberty, Biochemical Thermodynamics (Wiley Interscience, Published Online, 2006). http://www.interscience.wiley.com

  117. J. Solids, Langmuir, the constitution and fundamental properties of solids and liquids, Part I. Amer. Chem. Soc. 38, 2221–2296 (1916)

    Article  Google Scholar 

  118. M. Jaroniec, A. Derylo, A. Marczewski, The Langmuir-Freundlich equation in adsorption from dilute solutions in solids. Monatshefte für Chemie 114(4), 393–397 (2004). http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Adsorb/equation.htm

  119. M. Fletcher, Bacterial Adhesion: Molecular and Ecological Diversity (J. Wiley/IEEE, Hoboken, 1996)

    Google Scholar 

  120. J.B. Fein, Quantifying the effects of bacteria on adsorption reactions in matter-rock systems. Chem. Geol. 169(3–4), 265–280 (2000)

    Article  Google Scholar 

  121. Online Surface Science Tutorials and Lecture Courses. http://www.uksaf.org/tutorials.html

  122. W. Zdunkowski, A. Bott, Thermodynamics of the Atmosphere—A Course in Theoretical Meteorology (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  123. J.V. Iribarne, W.L. Godson, Atmospheric Thermodynamics (Kluwer, Boston, 1981) (available from Springer)

    Google Scholar 

  124. Thermodynamics of the atmosphere, http://www.auf.asn.au/meteorology/section1a.html

  125. A.A Tsonis, An Introduction to Atmosphere Thermodynamics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  126. E.P. Odum, Fundamentals of Ecology (Saunders, Philadelphia, 1953)

    Google Scholar 

  127. H.T. Odum, E.C. Odum, Energy Basis for Man and Nature (McGraw-Hill, New York, 1976)

    Google Scholar 

  128. R.E. Vlanowicz, Ecology the Ascendant Perspective (Columbia University Press, New York, 1997)

    Google Scholar 

  129. S.E. Jorgensen, J.J. Kay, Thermodynamics and Ecology (Lewis Publishers, Boca Raton, 1999)

    Google Scholar 

  130. About Thermodynamics and Ecology. http://www.jameskay.ca/about/thermo.html

  131. M. Ruth, Integrating Economics, Ecology and Thermodynamics (Kluwer, Boston, 1993) (available form Springer)

    Google Scholar 

  132. Energy Flow and Efficiency. http://courses.washington.edu/anth457/energy.htm

  133. E. Cook, The flow of energy in industrial society. Sci. Am. 224(3), 134–148 (1971)

    Article  Google Scholar 

  134. M.A. Little, E.B. Morren Jr., Ecology, Energetics and Human Variability (W.C. Brown, Dubuque, Iowa, 1976)

    Google Scholar 

  135. R.A. Rappaport, The Flow of Energy in an Agricultural Society. Sci. Am. 224(3), 116–132 (1971)

    Article  Google Scholar 

  136. L. Cemic, Thermodynamics in Mineral Sciences: An Introduction (Springer, Berlin/Heidelberg, 2005)

    Google Scholar 

  137. B.J. Wood, Elementary Thermodynamics for Geologists (Oxford University Press, Oxford, 1977)

    Google Scholar 

  138. D.K. Nordstrom, Geochemical Thermodynamics (Blackburn Press, Caldwell, 1986)

    Google Scholar 

  139. Geochemical Thermodynamics. http://www.geokem.co.nz/capab_thermo.html

  140. G.M. Anderson, Thermodynamics of Natural Systems (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  141. D. Derkins, A. Kozioi, Teaching Phase Equilibria: Thermodynamics. http://serc.carleton.edu/research_education/equilibria/thermodynamics.html

  142. R. Teisseyre, E. Majewski, R. Dmowska, J.R. Holton, Earthquake Thermodynamics, and Phase Transformation in the Earth’s Interior (Academic Press, New York, 2000)

    Google Scholar 

  143. R.M. Wald, Quantum Field Theory in Curved Spacetime and Blackhole Thermodynamics (The University of Chicago Press, Chicago, 1994)

    MATH  Google Scholar 

  144. E.J. Chaisson, Cosmic Evolution: The Rise of Complexity in Nature (Harvard University Press, Cambridge, 2001)

    Google Scholar 

  145. J. Prigogine, E. Geheniau, P. Gunzig, Nardone, thermodynamics of cosmological matter creation. JSTOR-Proc. Natl. Acad. Sci. USA 85(20), 7428–7432 (1988)

    Article  Google Scholar 

  146. G.W. Gibbons, S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation. PROLA: Phys. Rev. Online Arch. D 15(10), 2738–2751 (1977)

    Google Scholar 

  147. B. Gal-Or, Cosmological origin of irreversibility, time, and time anisotropies (I). Found. Phys. 6(4), 407–426 (1976)

    Article  Google Scholar 

  148. R.C. Tolman, Relativity, Thermodynamics and Cosmology (The Clarendon Press, Oxford, 1934)

    MATH  Google Scholar 

  149. Thermodynamics of the Universe—Wikipedia. http://en.wikipedia.org/wiki/Thermodynamics_of_the_universe

  150. Black Hole Thermodynamics. http://www.eoht.info/page/Black+hole+thermodynamics

  151. C.J. Adkins, Equilibrium Thermodynamics (Cambridge University Press, Cambridge, 1983)

    Book  Google Scholar 

  152. D. Jou, J. Casas-Vazquez, G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  153. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971)

    MATH  Google Scholar 

  154. S.P. Mahulikar, H. Herwig, Conceptual investigation of the entropy production principle for identification of directives for creation, existence and total destruction of order. Phys. Scr. 70, 212–221 (2004)

    Article  Google Scholar 

  155. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1962)

    MATH  Google Scholar 

  156. Y. Demirel, Non Equilibrium Thermodynamics (Elsevier, Amsterdam, 2007)

    Google Scholar 

  157. C. Bustamante, Liphardt, F. Ritort, The nonequibrium thermodynamics of small systems. Phys. Today, pp. 43–48, (2005)

    Google Scholar 

  158. G.W. Paltridge, Climate and thermodynamic systems of maximum dissipation. Nature 279, 530–631 (1979). http://adsabs.harvard.edu/abs/1979Natur.279.630P

  159. R. Swenson, Autocatakinetics, evolution, and the law of maximum entropy production. Adv. Hum. Ecol. 6, 1–46 (1977)

    Google Scholar 

  160. I. Prigogine, Etude Thermodynamique des Phenomenes Irreversibles (Desoer, Liege, 1947)

    Google Scholar 

  161. Wikipedia (a) Non-equilibrium thermodynamics, (b) Maximum-Entropy production

    Google Scholar 

  162. N. Georgescu-Roegen, The Entropy Law and Economic Process (Harvard University Press, Cambridge, 1971)

    Book  Google Scholar 

  163. H. Quevedo, M.N. Quevedo, Statistical thermodynamics of economic systems. http://arxiv.org/abs/0903.4216

  164. P. Burley, J. Foster (eds.), Economics and Thermodynamics: New Perspectives on Economic Analysis (Springer, New York, 1996)

    Google Scholar 

  165. R.U. Ayres, Eco-thermodynamics: economics and the second law. http://www.sciencedirect.com

  166. S. Sieniutycz, P. Salamon, Finite-Thermodynamics and Thermoeconomics (Taylor and Francis, London, 1990)

    Google Scholar 

  167. M.E. Yehia, The Thermoeconomics of Energy Conversions (Pergamon, London, 2003)

    Google Scholar 

  168. W. Lepkowski, The social thermodynamics of Ilya Prigogine. Chem. Eng. News 57, pp. 16, 16 Apr 1979

    Google Scholar 

  169. M.M. Callaway, The Energetics of Business (Lincoln Park Publications, Chicago, 2006)

    Google Scholar 

  170. L. Liss, Human thermodynamics and business efficiency. J. Hum. Thermodyn. 1(6), 62–67 (2005). http://www.eoht.info/page/Business+thermodynamics

  171. Journal of Human Thermodynamics. http://www.human+thermodynamics.com/JHT/Business-Efficiency.html

    Google Scholar 

  172. A.D. Little, The place of chemistry in business. Technol. Rev. 25, 360–362 (1922)

    Google Scholar 

  173. http://www.eoht.info/page/Business+chemistry

  174. Business Operation Efficiency Analysis. http://www.economy-point.org/b/business-operation-analysis

  175. S. Wolfram, Statistical Mechanics of Cellular Automata (The Inst. For Advanced Studies, Princeton, N.J., 1983). http://www.ifsc.usp.br/~lattice/artigo-wolfram-cellular-autom.pdf

  176. S., Wolfram, Cellular Automata and Complexity: Collected Papers (Addison—Wesley Pub., Reading, MA, 1994)

    Google Scholar 

  177. P. Salamon, P. Sibani, R. Frost, Facts, Conjectures, and Improvements for Simulated Annealing (Society for Industrial and Applied Mathematics Publ, Philadelphia, 2002)

    Book  MATH  Google Scholar 

  178. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  179. H. Baker, Thermodynamics and Carbage collection. ACM Sigplan Not. 29(4), 58–63 (1994). ftp://ftp.netcom.com/pub/hb/hbaker/ThermoGC.ps.Z

    Google Scholar 

  180. W. Peng, J. Li, Problem’s thermodynamics energy analysis method. Proc. Intl. Forum Inf. Technol. Appl. (IFITA), 2, 206–208, Chengdu, China, 15–17 May 2009

    Google Scholar 

  181. W. Sidis, The Animate and the Inanimate (R.G. Badger, Boston, 1925)

    Google Scholar 

  182. L. Boltzmann, The second law of thermodynamics, in Ludwig Boltzmann: Theoretical Physics and Philosophical Problems—Select Writings, ed. by B. McGuiness (D. Reider, Dordrecht, Netherlands (available from Springer, 1886)

    Google Scholar 

  183. J. Johnstone, The Philosophy of Biology (Cambridge University Press, Cambridge, 1914), p. 54

    Google Scholar 

  184. Entropy and Life: Wikipedia, http://en.wikipedia.org/wiki/Entropy_and_life

  185. E. Schrödinger, What is Life? Ch.6: Order, Disorder and Entropy (Cambridge University Press, Cambridge, 1944)

    Google Scholar 

  186. J. Chen, Universal Natural Law and Universal Human Behavior (2002), http://papers.ssrn.com/s013/papers.cfm?abstract_id=303500

  187. Human Thermodynamics: The science of Energy Transformation, http://www.humanthermodynamics.com

  188. Encyclopedia of Human Thermodynamics (a) http://www.eocht/info (b) http://www.eocht.info/thread/3300562/Entropy+in+20th+Century+Chemistry

  189. P.T. Landsberg, Seeking Ultimates: An Intuitive Guide to Physics (CRC Press, Taylor and Francis, London, 1999)

    Book  MATH  Google Scholar 

  190. A.R. Ubbelohde, Time and Thermodynamics, Chap. IX: Thermodynamics and Life (Oxford University Press, Oxford, 1947)

    Google Scholar 

  191. R.B. Lindsay, Entropy consumption and values in physical science. Am. Sci. 47(3), 376–385 (1959)

    Google Scholar 

  192. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience Publishers, New York, 1955), p. 12

    Google Scholar 

  193. I. Prigogine, I. Stengers, Order out of Chaos: Mans New Dialogue with Nature, Flamingo, (Mountain Man Graphics Web Publ. Australia 1984). http://www.mountainman.com/chaos_02.htm

  194. M. Perutz, Erwin Schrödinger’s what is Life and molecular biology? in Schrödinger: Centenary celebration of a Polymath, ed. by C.W. Kilmister (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  195. T. Fararo, The Meaning of General Theoretical Sociology: Tradition and Formalization (Cambridge University Press, Cambridge, 1992), pp. 86–87

    Google Scholar 

  196. I. Aoki, Entropy production in human life span: a thermodynamic measure of aging. Age 1, 29–31 (1994)

    Google Scholar 

  197. E.D. Schneider, J.J. Kay, order from disorder: the thermodynamics of complexity in biology, in “What is Life: The Next Fifty Years Reflections on the Future of Biology, ed. by M.P. Murphy, L.A.J. O’Neil (Cambridge University Press, Cambridge, 1995), pp. 161–172

    Google Scholar 

  198. F. Capra, The Hidden Connections: A Science for Sustainable Living (Anchor Books, New York, 2002), pp. 13–32

    Google Scholar 

  199. E.D. Schneider, D., Sagan, Into the Cool: Energy Flow, Thermodynamics and Life (Part I—The Energetic, Part II—The Complex, Part III—The Living, Part IV—The Human) (The University of Chicago Press, Chicago, 2005)

    Google Scholar 

  200. G.P. Cladyshev, What is life? Bio-physical perspectives. Adv. Gerontol. 22(2), 233–236 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19947386

  201. G.P. Gladyshev, On the thermodynamics of biological evolution. J. Theor. Biol. 75(4), 425–441 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  202. G. Gladyshev, Thermodynamic Theory of the Evolution of Living Beings (Nova Science Publishers, Commack, New York, 1997), p. 137

    Google Scholar 

  203. G. Gladyshev, Thermodynamic self-organization as a mechanism of hierarchical structure formation of biological matter. Prog. React. Kinet. Mech. 28(2), 157–188 (2003)

    Article  Google Scholar 

  204. G.L. Murphy, Time thermodynamics and theology, Zygon. J. Relig. Sci. 26(3), 359–372 (1991)

    MathSciNet  Google Scholar 

  205. E.W. Barnes, Scientific Theory and Religion: The World Described by Science and Its Spiritual Interpretation (The University Press, Aberdeen, 1933)

    MATH  Google Scholar 

  206. H. Morowitz, The Emergence of Everything (Oxford University Press, Oxford, 2002)

    Google Scholar 

  207. P. Weiss, Another Face of Entropy: Particles Self-Organize to Make Room for Randomness. Sci. News 154, 108–109 (1998)

    Article  Google Scholar 

  208. S. Kaufman, At Home in the Universe: The Search for the Laws of Self-Organization and Complexity (Oxford University Press, Oxford, 1996)

    Google Scholar 

  209. S. Kaufman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, Oxford, 1993)

    Google Scholar 

  210. B. Klyce, The Second Law of Thermodynamics. http://www.panspermia.com/secondlaw.htm

  211. L. Boltzmann, The Second Law of Thermodynamics (address to a Meeting of the Imperial Academy of Science, 29 May 1886), Reprinted in: L. Boltzmann Theoretical Physics and Philosophical Problem (S.G. Brush, translator) (D. Reidel, Boston, 1974)

    Google Scholar 

  212. H.B. Callen, Thermodynamics and an Introduction to Thermostatics (J. Wiley, New York, 2001)

    MATH  Google Scholar 

  213. P.T. Landsberg, Can entropy and order increase together? Phys. Lett. 102-A, 171–173, 1984

    Google Scholar 

  214. P.T. Landsberg, Is equilibrium always an entropy maximum? J. Statist. Phys. 35, 159–169 (1984)

    Article  MathSciNet  Google Scholar 

  215. D.F. Styer, Insight into entropy. Am. J. Phys. 68(12), 1090–1096 (2000)

    Article  Google Scholar 

  216. E.P. Gyftopoulos, Entropy: an inherent, nonstatistical property of any system in any state. Int. J. Thermodyn. 9(3), 107–115 (2006)

    Google Scholar 

  217. E.P. Gyftopoulos, Entropies of statistical mechanics and disorder versus the entropy of thermodynamics and order. J. Energy Resour. Technol. 123, 110–123 (2001)

    Article  Google Scholar 

  218. F.L. Lambert, Disorder—a cracked crutch for supporting entropy discussions. J. Chem. Educ. R. Soc. Chem. 79, 79 (2002). http://jchemed.chem.wisc.edu/HS/Journal/Issues/2002/Feb/abs187.html http://www.entropysite.com/cracked_crutch.htm

  219. W. Thomson, On a universal tendency in nature to the dissipation of mechanical energy. Proc. R. Soc. Edinb. 19 Apr 1852. http://zapatopi.net/kelvin/papers/on_a_universal_tendency.html

  220. Energy Dispersal – Wikipedia, http://en.wilipedia.org/wiki/Energy-dispersal

  221. K. Denbigh, Principles of Chemical Equilibrium (Cambridge University Press, Cambridge, 1981)

    Book  Google Scholar 

  222. P. Atkins, The Second Law (J. Sci. Am. Libr., New York, 1984)

    Google Scholar 

  223. P. Atkins, J. De Paula, Physical Chemistry (Oxford University Press, Oxford, 2006)

    Google Scholar 

  224. J. Wrigglesworth, Energy and Life Modules in Life Sciences (CRC, Boca Raton, Fl, 1997)

    Google Scholar 

  225. M.C. Gupta, Statistical Thermodynamics (New Age Publishers, Ringwood, 1999)

    Google Scholar 

  226. C. Starr, R. Taggart, Biology: The Unity of Diversity of Life (Wadsworth Publishers, Las Vegas, 1992)

    Google Scholar 

  227. Scott, Key Ideas in Chemistry (Teach Yourself Books, London, 2001)

    Google Scholar 

  228. http://entropysite.oxy.edu/entropy_isnot_disorder.htm http://entropysite.oxy.edu/students_approach.html http://entropysite.com/entropy_is_simple/index.html#microstate

  229. Energy Dispersal and Entropy Misinterpretations—Encyclopedia of Human Thermodynamics http://www.eoht.info/page/Energy+dispersal http://www.eoht.info/page/Entropy+(misinterpretations)

  230. R. Swenson, in Emergence and the principle of maximum entropy production: multi-level system theory, evolution and non-equilibrium thermodynamics. Proceedings of 32nd Annual Meeting of the International Society for General Systems Research, (1988), p. 32

    Google Scholar 

  231. R. Swenson, Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution. Syst. Res. 6, 187–198 (1989)

    Article  Google Scholar 

  232. R. Swenson, M.T. Turvey, Thermodynamic reasons for perception action cycles. Ecol. Psychol. 3(4), 317–348 (1991)

    Article  Google Scholar 

  233. R. Swenson, Spontaneous order, evolution and autocatakinetics: the nomological basis for the emergence of meaning, in Evolutionary Systems, ed. by G. van de Vijver et al. (Kluwer, Dordrecht, The Netherlands, 1998)

    Google Scholar 

  234. The Law of Maximum Entropy Production. http://www.lawofmaximumentropyproduction.com/ http://www.entropylaw.com

  235. G.N. Hatsopoulos, J.H. Keenan, A single axiom for classical thermodynamics. ASME J. Appl. Mech. 29, 193–199 (1962)

    Article  MathSciNet  Google Scholar 

  236. G.N. Hatsopoulos, J.H. Keenan, Principles of General Thermodynamics (Law of Stable Equilibrium) (J. Wiley, New York, 1965), p. 367

    Google Scholar 

  237. J. Kestin, A Course in Thermodynamics (Blaisdell Publ. Co., New York, 1966)

    Google Scholar 

  238. E.D. Schneider, J.J. Kay, Life as a manifestation of the second law of thermodynamics. Math. Comput. Model. 19(6–8), 25–48 (1994)

    Article  Google Scholar 

  239. I. Walker, Maxwell demon in biological systems. Acta Biotheor. 25(2–3), 103–110 (1976)

    Google Scholar 

  240. W. Brown, Science: A Demon Blow to the Second Law of Thermodynamics (New Scientist, Issue 1725, 14 July 1990)

    Google Scholar 

  241. J. Earman, D.J., Exorcist XIV: The Wrath of Maxwell’s Demon, Part I. From Maxwell to Szilard, Studies in History and Philosophy of Science, Part B, 29(4), 435–471, 1998; Part II. From Szilard to Landauer and Beyond, ibid, 30(1), 1–40 (1999), http://philopapers.org/rec/EAREXT-2

  242. E.P. Gyftopoulos, Maxwell’s Demon: (I) a thermodynamic exorcism. Phys. A 307(3-4), 405–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  243. E.P. Gyftopoulos, Maxwell’s Demon: (II) a quantum theoretic exorcism, ibid, 307, (3–4), 421–436 (2002)

    Google Scholar 

  244. E.P. Gyftopoulos, G.P. Beretta, What is the Second Law of Thermodynamics and Are there any limits to its Validity? Quant-ph/0507187 (Elsevier Science, 19 July 2005)

    Google Scholar 

  245. V. Capek, D.P. Sheehan, Challenges to the Second Law of Thermodynamics (Springer, Dordrecht, 2005)

    Book  MATH  Google Scholar 

  246. R.S. Morris, Time’s Arrows: Scientific Attitudes toward Time (Simon & Schuster, New York, 1985)

    Google Scholar 

  247. J.T. Fraser, Time: The Familiar Stranger (MIT Press, Boston, Mass, 1987)

    Google Scholar 

  248. B. Goertzel, From Complexity to Creativity: Explorations in Evolutionary, Autopoietic Dynamics (Plenum Press, New York, 1996). Also: http://www.goertzel.org/papers/timepap.html

  249. D. Pacchidi, The Arrow of Time, The Pennsylvania State University. http://www.rps.edu/time/arrow.html

  250. D. Layzer, The Arrow of Time, Scientific American, 1975. http://www.scientificamerican.com/media/pdf/2008-05-21_1975-carroll-story.pdf

  251. J.-G. Cramer, An overview of the transactional interpretation of quantum mechanics. Intl. J. Theor. Phys. 27(2), 227–236 (1988)

    Article  MathSciNet  Google Scholar 

  252. R.C. Tolman, The Principles of Statistical Mechanics (Dover Publications, New York, 1979)

    MATH  Google Scholar 

  253. W.E. Burns, Science in the Enlightenment: An Encyclopedia (ABC-CLIO, Santa BarBara, CA, 2003), pp. 109–111

    Google Scholar 

  254. T. Levere, Affinity and Matter-Elements of Chemical Philosophy (1800–1865) (Taylor and Francis, London/New York, 1993)

    Google Scholar 

  255. J.R. Partington, A Short History of Chemistry (MacMillan and Co., New York, 1957)

    Google Scholar 

  256. H. Devoe, Thermodynamics and Chemistry (Prentice Hall, Saddle River, 2000)

    Google Scholar 

  257. Scribd: Hierarchical thermodynamics: general theory of existence and living world development. http://www.scribd.com/doc/8543701/Hierarchical-thermodynamics-general-theory-of-existence-and-living-world-development http://www.endeav.org/?id=47

  258. S. Sandler, Chemical and Engineering Thermodynamics (Wiley, New York, 1989)

    Google Scholar 

  259. G.N. Hatsopoulos, From Watt’s Steam engine to the unified quantum theory of mechanics and thermodynamics. Int. J. Thermodyn. 9(3), 97–105 (2006)

    Google Scholar 

  260. J.C. Maxwell, E. Garber, S.G. Brush, Maxwell on Molecules and Gases (MIT Press, Cambridge, 1986)

    Google Scholar 

  261. G.P. Gladyshev, The principle of substance stability applicable to all levels of organization of living matter. Int. J. Mol. Sci. 7, 98–110 (2006)

    Article  Google Scholar 

  262. R.W. Sterner, J.J. Elser, Ecological stoichiometry: The Biology of Elements from Molecules to the Biosphere, Chap. 1 (Princeton University Press, Princeton, 2002)

    Google Scholar 

  263. C.M. Wieland, Letter to Karl August Bottiger, Weimar Quoted from Tantillo, 16 July 2001, pp. 9–10

    Google Scholar 

  264. S. Fuller, “I am not a molecule”. New Sci. Issue 2502 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros G. Tzafestas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzafestas, S.G. (2018). Energy II: Thermodynamics. In: Energy, Information, Feedback, Adaptation, and Self-organization. Intelligent Systems, Control and Automation: Science and Engineering, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-66999-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66999-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66998-4

  • Online ISBN: 978-3-319-66999-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics