Skip to main content

The Numerical Approximation of Koopman Modes of a Nonlinear Operator Along a Trajectory

  • Conference paper
  • First Online:
Sustained Simulation Performance 2017

Abstract

The spectral theory of linear operators enables the analysis of their properties on stable subspaces. The Koopman operator allows to extend these approaches to a large class of nonlinear operators in a surprising way. This is even applicable for numerical analysis of time dependent data of simulations and measurements. We give here some remarks on the numerical approach, link it to spectral analysis by the Herglotz-Bochner theorem and are doing some steps for significance for partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellow, A., Losert, V.: The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences. Trans. Am. Math. Soc. 288(1), 307–345 (1985). https://doi.org/10.1090/S0002-9947-1985-0773063-8

    Article  MATH  MathSciNet  Google Scholar 

  2. Besicovitch, A.S.: On generalized almost periodic functions. Proc. Lond. Math. Soc. s2-25, 495–512 (1926). doi:10.1112/plms/s2-25.1.495

    Google Scholar 

  3. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22, 047510 (2012). doi:10.1063/1.4772195. http://dx.doi.org/10.1063/1.4772195

    Google Scholar 

  4. Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyse. J. Nonlinear Sci. 22(6), 887–915 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  6. Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. U. S. A. 17(5), 315–318 (1931)

    Article  MATH  Google Scholar 

  7. Küster, U.: The spectral structure of a nonlinear operator and its approximation. In: Sustained Simulation Performance 2015: Proceedings of the Joint Workshop on Sustained Simulation Performance, University of Stuttgart (HLRS) and Tohoku University, pp. 109–123. Springer, Cham (2015) ISBN:978-3-319-20340-9. doi:10.1007/978-3-319-20340-9_9

    Google Scholar 

  8. Küster, U.: The spectral structure of a nonlinear operator and its approximation II. In: Sustained Simulation Performance 2016: Proceedings of the Joint Workshop on Sustained Simulation Performance, University of Stuttgart (HLRS) and Tohoku University (2016). ISBN:978-3-319-46735-1

    Google Scholar 

  9. Mirzaee, H., Henn, T., Krause, M. J., Goubergrits, L., Schumann, C., Neugebauer, M., Kuehne, T., Preusser, T., Hennemuth, A.: MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: clinical validation study. J. Magn. Reson. Imaging 45(1), 139–146 (2016). doi:10.1002/jmri.25366

    Article  Google Scholar 

  10. Rellich, F.: Störungstheorie der Spektralzerlegung I., Analytische Störung der isolierten Punkteigenwerte eines beschränkten Operators. Math. Ann. 113, 600–619 (1937)

    Google Scholar 

  11. Ruopp, A., Schneider, R., MRI-based computational hemodynamics in patients. In: Resch, M.M., Bez, W., Focht, E. (eds.) Sustained Simulation Performance 2017 (abbrev. WSSP 2017). Springer, Cham (2017). doi:10.1007/978-3-319-66896-3

    Google Scholar 

  12. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 24 (2010)

    Article  MathSciNet  Google Scholar 

  13. Schröder, E.: Ueber iterirte Functionen. Math. Ann. 3(2), 296–322 (1870). doi:10.1007/BF01443992

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Küster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Küster, U., Schneider, R., Ruopp, A. (2017). The Numerical Approximation of Koopman Modes of a Nonlinear Operator Along a Trajectory. In: Resch, M., Bez, W., Focht, E., Gienger, M., Kobayashi, H. (eds) Sustained Simulation Performance 2017 . Springer, Cham. https://doi.org/10.1007/978-3-319-66896-3_3

Download citation

Publish with us

Policies and ethics