Skip to main content

Antibiotic Prophylaxis to Prevent Infection in Total Knee Arthroplasty

  • Chapter
  • First Online:
The Infected Total Knee Arthroplasty

Abstract

Total knee arthroplasty (TKA) is one of the most frequent and successful procedures performed in orthopedic surgery. Despite its safety, complications are still present. Infection is one of the more devastating complications in TKA as it places a significant burden on patients, surgeons, and health systems. Surgical site infection in non-contaminated surgery still affects 2–5% of patients. These data highlight the importance of prophylactic measures in preventing infection following TKA. The key point on choosing antibiotic prophylaxis is the spectrum of action and the penetration into the bone and periarticular tissues. Antibiotics should cover the most frequent microorganisms causing postoperative infection. It should achieve a high enough concentration (at least the minimum inhibitory concentration) in the serum and bone and maintain this over time. For standard antibiotic prophylaxis, drug administration should be done during the hour before incision. Cephalosporins are the most widely used antibiotics for periprosthetic joint infection prophylaxis during the last decades in the USA and Europe. They are effective against gram-positive organisms, aerobic gram-negative bacilli, and anaerobes. Despite the great advantages, cefazolin (1–3 g depending on body weight every 2–5 h) is not effective against methicillin-resistant Staphylococcus aureus (MRSA). For this, increased prevalence of MRSA should be taken into account to decide if cefazolin is the best option. However, clindamycin (90 mg every 3–6 h) and vancomycin (15/kg every 6–12 h) are appropriate options when cephalosporins are contraindicated (i.e., allergy) or when risk factors for antibiotic-resistant organism are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosco JA, Bookman J, Slover J, Edusei E, Levine B. Principles of antibiotic prophylaxis in total joint arthroplasty: current concepts. J Am Acad Orthop Surg. 2015;23:e27–35.

    Article  PubMed  Google Scholar 

  2. Anderson DJ, Sexton DJ, Kanafani ZA, Auten G, Kaye KS. Severe surgical site infection in community hospitals: epidemiology, key procedures, and the changing prevalence of methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2007;28:1047–53.

    Article  PubMed  Google Scholar 

  3. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplast. 2012;27(8 Suppl):61–65.e1.

    Article  Google Scholar 

  4. Prokuski L. Prophylactic antibiotics in orthopaedic surgery. J Am Acad Orthop Surg. 2008;16:283–93.

    Article  PubMed  Google Scholar 

  5. Illingworth KD, Mihalko WM, Parvizi J, Sculco T, McArthur B, el Bitar Y, et al. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: a multicenter approach: AAOS exhibit selection. J Bone Joint Surg Am. 2013;95:e50.

    Article  PubMed  Google Scholar 

  6. Lamagni T. Epidemiology and burden of prosthetic joint infections. J Antimicrob Chemother. 2014;69(Suppl 1):5–10.

    Article  Google Scholar 

  7. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect. 2013;14:73–156.

    Article  Google Scholar 

  8. Meehan J, Jamali AA, Nguyen H. Prophylactic antibiotics in hip and knee arthroplasty. J Bone Joint Surg Am. 2009;91:2480–90.

    Article  PubMed  Google Scholar 

  9. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70:195–283.

    Article  CAS  PubMed  Google Scholar 

  10. Burke JF. The effective period of preventive antibiotic action in experimental incisions and dermal lesions. Surgery. 1961;50:161–8.

    CAS  PubMed  Google Scholar 

  11. Tachdjian MO, Compere EL. Postoperative wound infections in orthopedic surgery; evaluation of prophylactic antibiotics. J Int Coll Surg. 1957;28(6 Pt 1):797–805.

    CAS  PubMed  Google Scholar 

  12. Fogelberg EV, Zitzmann EK, Stinchfield FE. Prophylactic penicillin in orthopaedic surgery. J Bone Joint Surg Am. 1970;52:95–8.

    Article  CAS  PubMed  Google Scholar 

  13. Peel TN, Cheng AC, Buising KL, Choong PFM. Microbiological aetiology, epidemiology, and clinical profile of prosthetic joint infections: are current antibiotic prophylaxis guidelines effective? Antimicrob Agents Chemother. 2012;56:2386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ritter MA. Operating room environment. Clin Orthop Relat Res. 1999;369:103–9.

    Article  Google Scholar 

  15. Rao N, Cannella B, Crossett LS, Yates AJ, McGough R. A preoperative decolonization protocol for Staphylococcus aureus prevents orthopaedic infections. Clin Orthop Relat Res. 2008;466:1343–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weiser MC, Moucha CS. The current state of screening and decolonization for the prevention of Staphylococcus aureus surgical site infection after total hip and knee arthroplasty. J Bone Joint Surg Am. 2015;97:1449–158.

    Article  PubMed  Google Scholar 

  17. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    Article  CAS  PubMed  Google Scholar 

  18. Costerton JW. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res. 2005;437:7–11.

    Google Scholar 

  19. Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012;65:158–68.

    Article  CAS  PubMed  Google Scholar 

  20. Septimus EJ, Schweizer ML. Decolonization in prevention of health care-associated infections. Clin Microbiol Rev. 2016;29:201–22.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Voigt J, Mosier M, Darouiche R. Antibiotics and antiseptics for preventing infection in people receiving revision total hip and knee prostheses: a systematic review of randomized controlled trials. BMC Infect Dis. 2016;16:749.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schulz LT, Fox BC, Polk RE. Can the antibiogram be used to assess microbiologic outcomes after antimicrobial stewardship interventions? A critical review of the literature. Pharmacotherapy. 2012;32:668–76.

    Article  PubMed  Google Scholar 

  23. Campbell KA, Stein S, Looze C, Bosco JA. Antibiotic stewardship in orthopaedic surgery: principles and practice. J Am Acad Orthop Surg. 2014;22:772–81.

    Article  PubMed  Google Scholar 

  24. Parvizi J, Gehrke T, Chen AF. Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone Joint J. 2013;95-B(11):1450–2.

    Article  CAS  PubMed  Google Scholar 

  25. Parvizi J, Pawasarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KJ. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplast. 2010;25(6 Suppl):103–7.

    Article  Google Scholar 

  26. Sewick A, Makani A, Wu C, O’Donnell J, Baldwin KD, Lee G-C. Does dual antibiotic prophylaxis better prevent surgical site infections in total joint arthroplasty? Clin Orthop Relat Res. 2012;470:2702–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tyllianakis ME, Karageorgos AC, Marangos MN, Saridis AG, Lambiris EE. Antibiotic prophylaxis in primary hip and knee arthroplasty: comparison between cefuroxime and two specific antistaphylococcal agents. J Arthroplast. 2010;25:1078–82.

    Article  Google Scholar 

  28. Angthong C, Krajubngern P, Tiyapongpattana W, Pongcharoen B, Pinsornsak P, Tammachote N, et al. Intraosseous concentration and inhibitory effect of different intravenous cefazolin doses used in preoperative prophylaxis of total knee arthroplasty. J Orthop Traumatol. 2015;16:331–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ravi S, Zhu M, Luey C, Young SW. Antibiotic resistance in early periprosthetic joint infection. ANZ J Surg. 2016;86:1014–8.

    Article  PubMed  Google Scholar 

  30. Eshkenazi AU, Garti A, Tamir L, Hendel D. Serum and synovial vancomycin concentrations following prophylactic administration in knee arthroplasty. Am J Knee Surg. 2001;14:221–3.

    CAS  PubMed  Google Scholar 

  31. Bryson DJ, Morris DLJ, Shivji FS, Rollins KR, Snape S, Ollivere BJ. Antibiotic prophylaxis in orthopaedic surgery: difficult decisions in an era of evolving antibiotic resistance. Bone Joint J. 2016;98-B:1014–9.

    Article  CAS  PubMed  Google Scholar 

  32. Lazzarini L, Novelli A, Marzano N, Timillero L, Fallani S, Viola R, et al. Regional and systemic prophylaxis with teicoplanin in total knee arthroplasty: a tissue penetration study. J Arthroplast. 2003;18:342–6.

    Article  Google Scholar 

  33. Asensio A, Alvarez-Espejo T, Fernandez-Crehuet J, Ramos A, Vaque-Rafart J, Bishopberger C, et al. Trends in yearly prevalence of third-generation cephalosporin and fluoroquinolone resistant Enterobacteriaceae infections and antimicrobial use in Spanish hospitals, Spain, 1999 to 2010. Euro Surveill. 2011;16(40):12–20.

    Google Scholar 

  34. Bannister GC, Auchincloss JM, Johnson DP, Newman JH. The timing of tourniquet application in relation to prophylactic antibiotic administration. J Bone Joint Surg Br. 1988;70:322–4.

    CAS  PubMed  Google Scholar 

  35. Steinberg JP, Braun BI, Hellinger WC, Kusek L, Bozikis MR, Bush AJ, et al. Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the trial to reduce antimicrobial prophylaxis errors. Ann Surg. 2009;250:10–6.

    Article  PubMed  Google Scholar 

  36. Soriano A, Bori G, García-Ramiro S, Martinez-Pastor JC, Miana T, Codina C, et al. Timing of antibiotic prophylaxis for primary total knee arthroplasty performed during ischemia. Clin Infect Dis. 2008;46:1009–14.

    Article  CAS  PubMed  Google Scholar 

  37. Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326:281–6.

    Article  CAS  PubMed  Google Scholar 

  38. Catanzano A, Phillips M, Dubrovskaya Y, Hutzler L, Bosco J. The standard one gram dose of vancomycin is not adequate prophylaxis for MRSA. Iowa Orthop J. 2014;34:111–7.

    PubMed  PubMed Central  Google Scholar 

  39. Swoboda SM, Merz C, Kostuik J, Trentler B, Lipsett PA. Does intraoperative blood loss affect antibiotic serum and tissue concentrations? Arch Surg. 1996;131:1165–71, discussion 1171–2.

    Article  CAS  PubMed  Google Scholar 

  40. Zelenitsky SA, Ariano RE, Harding GKM, Silverman RE. Antibiotic pharmacodynamics in surgical prophylaxis: an association between intraoperative antibiotic concentrations and efficacy. Antimicrob Agents Chemother. 2002;46:3026–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wymenga AB, Hekster YA, Theeuwes A, Muytjens HL, van Horn JR, Slooff TJ. Antibiotic use after cefuroxime prophylaxis in hip and knee joint replacement. Clin Pharmacol Ther. 1991;50:215–20.

    Article  CAS  PubMed  Google Scholar 

  42. Williams DN, Gustilo RB. The use of preventive antibiotics in orthopaedic surgery. Clin Orthop Relat Res. 1984;190:83–8.

    Google Scholar 

  43. Mauerhan DR, Nelson CL, Smith DL, Fitzgerald RH, Slama TG, Petty RW, et al. Prophylaxis against infection in total joint arthroplasty. One day of cefuroxime compared with three days of cefazolin. J Bone Joint Surg Am. 1994;76:39–45.

    Article  CAS  PubMed  Google Scholar 

  44. Campbell R, Dean B, Nathanson B, Haidar T, Strauss M, Thomas S. Length of stay and hospital costs among high-risk patients with hospital-origin Clostridium difficile-associated diarrhea. J Med Econ. 2013;16:440–8.

    Article  PubMed  Google Scholar 

  45. Tokarski AT, Karam JA, Zmistowski B, Deirmengian CA, Deirmengian GK. Clostridium difficile is common in patients with postoperative diarrhea after hip and knee arthroplasty. J Arthroplast. 2014;29:1110–3.

    Article  Google Scholar 

  46. Magee G, Strauss ME, Thomas SM, Brown H, Baumer D, Broderick KC. Impact of Clostridium difficile-associated diarrhea on acute care length of stay, hospital costs, and readmission: a multicenter retrospective study of inpatients, 2009–2011. Am J Infect Control. 2015;43:1148–53.

    Article  PubMed  Google Scholar 

  47. Drozd EM, Inocencio TJ, Braithwaite S, Jagun D, Shah H, Quon NC, et al. Mortality, hospital costs, payments, and readmissions associated with Clostridium difficile infection among Medicare beneficiaries. Infect Dis Clin Pract (Baltim Md). 2015;23:318–23.

    Article  Google Scholar 

  48. Pitt HA, Postier RG, MacGowan AW, Frank LW, Surmak AJ, Sitzman JV, et al. Prophylactic antibiotics in vascular surgery. Topical, systemic, or both? Ann Surg. 1980;192:356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bode LGM, Kluytmans JAJW, Wertheim HFL, Bogaers D, Vandenbroucke-Grauls CMJE, Roosendaal R, et al. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med. 2010;362:9–17.

    Article  CAS  PubMed  Google Scholar 

  50. Kalmeijer MD, van Nieuwland-Bollen E, Bogaers-Hofman D, de Baere GA. Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect Control Hosp Epidemiol. 2000;21:319–23.

    Article  CAS  PubMed  Google Scholar 

  51. Skråmm I, Fossum Moen AE, Årøen A, Bukholm G. Surgical site infections in orthopaedic surgery demonstrate clones similar to those in orthopaedic Staphylococcus aureus nasal carriers. J Bone Joint Surg Am. 2014;96:882–8.

    Article  PubMed  Google Scholar 

  52. Kim DH, Spencer M, Davidson SM, Li L, Shaw JD, Gulczynski D, et al. Institutional prescreening for detection and eradication of methicillin-resistant Staphylococcus aureus in patients undergoing elective orthopaedic surgery. J Bone Joint Surg Am. 2010;92:1820–6.

    Article  PubMed  Google Scholar 

  53. Hadley S, Immerman I, Hutzler L, Slover J, Bosco J. Staphylococcus aureus decolonization protocol decreases surgical site infections for total joint replacement. Arthritis. 2010;2010:924518.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mulcahy ME, Geoghegan JA, Monk IR, O’Keeffe KM, Walsh EJ, Foster TJ, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 2012;8:e1003092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wassenberg MWM, Kluytmans JA, Bosboom RW, Buiting AGM, van Elzakker EPM, Melchers WJG, et al. Rapid diagnostic testing of methicillin-resistant Staphylococcus aureus carriage at different anatomical sites: costs and benefits of less extensive screening regimens. Clin Microbiol Infect. 2011;17:1704–10.

    Article  CAS  PubMed  Google Scholar 

  56. Hacek DM, Robb WJ, Paule SM, Kudrna JC, Stamos VP, Peterson LR. Staphylococcus aureus nasal decolonization in joint replacement surgery reduces infection. Clin Orthop Relat Res. 2008;466:1349–55.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Courville XF, Tomek IM, Kirkland KB, Birhle M, Kantor SR, Finlayson SRG. Cost-effectiveness of preoperative nasal mupirocin treatment in preventing surgical site infection in patients undergoing total hip and knee arthroplasty: a cost-effectiveness analysis. Infect Control Hosp Epidemiol. 2012;33:152–9.

    Article  PubMed  Google Scholar 

  58. Slover J, Haas JP, Quirno M, Phillips MS, Bosco JA. Cost-effectiveness of a Staphylococcus aureus screening and decolonization program for high-risk orthopedic patients. J Arthroplast. 2011;26:360–5.

    Article  Google Scholar 

  59. Shrestha NK, Shermock KM, Gordon SM, Tuohy MJ, Wilson DA, Cwynar RE, et al. Predictive value and cost-effectiveness analysis of a rapid polymerase chain reaction for preoperative detection of nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol. 2003;24:327–33.

    Article  PubMed  Google Scholar 

  60. Lauderdale T-LY, Wang J-T, Lee W-S, Huang J-H, McDonald LC, Huang I-W, et al. Carriage rates of methicillin-resistant Staphylococcus aureus (MRSA) depend on anatomic location, the number of sites cultured, culture methods, and the distribution of clonotypes. Eur J Clin Microbiol Infect Dis. 2010;29:1553–9.

    Article  PubMed  Google Scholar 

  61. Luteijn JM, Hubben GA, Pechlivanoglou P, Bonten MJ, Postma MJ. Diagnostic accuracy of culture-based and PCR-based detection tests for methicillin-resistant Staphylococcus aureus: a meta-analysis. Clin Microbiol Infect. 2011;17:146–54.

    Article  CAS  PubMed  Google Scholar 

  62. Perl TM. Prevention of Staphylococcus aureus infections among surgical patients: beyond traditional perioperative prophylaxis. Surgery. 2003;134(5 Suppl):S10–7.

    Article  PubMed  Google Scholar 

  63. Kalmeijer MD, Coertjens H, van Nieuwland-Bollen PM, Bogaers-Hofman D, de Baere GJ, Stuurman A, et al. Surgical site infections in orthopedic surgery: the effect of mupirocin nasal ointment in a double-blind, randomized, placebo-controlled study. Clin Infect Dis. 2002;35:353–8.

    Article  CAS  PubMed  Google Scholar 

  64. Poovelikunnel T, Gethin G, Humphreys H. Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. J Antimicrob Chemother. 2015;70:2681–92.

    Article  CAS  PubMed  Google Scholar 

  65. Caffrey AR, Quilliam BJ, LaPlante KL. Risk factors associated with mupirocin resistance in methicillin-resistant Staphylococcus aureus. J Hosp Infect. 2010;76:206–10.

    Article  CAS  PubMed  Google Scholar 

  66. Anderson MJ, David ML, Scholz M, Bull SJ, Morse D, Hulse-Stevens M, et al. Efficacy of skin and nasal povidone-iodine preparation against mupirocin-resistant methicillin-resistant Staphylococcus aureus and S. aureus within the anterior nares. Antimicrob Agents Chemother. 2015;59:2765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McConeghy KW, Mikolich DJ, LaPlante KL. Agents for the decolonization of methicillin-resistant Staphylococcus aureus. Pharmacotherapy. 2009;29:263–80.

    Article  CAS  PubMed  Google Scholar 

  68. Hill RL, Casewell MW. The in-vitro activity of povidone-iodine cream against Staphylococcus aureus and its bioavailability in nasal secretions. J Hosp Infect. 2000;45:198–205.

    Article  CAS  PubMed  Google Scholar 

  69. Kapadia BH, Johnson AJ, Daley JA, Issa K, Mont MA. Pre-admission cutaneous chlorhexidine preparation reduces surgical site infections in total hip arthroplasty. J Arthroplast. 2013;28:490–3.

    Article  Google Scholar 

  70. Immerman I, Ramos NL, Katz GM, Hutzler LH, Phillips MS, Bosco JA. The persistence of Staphylococcus aureus decolonization after mupirocin and topical chlorhexidine: implications for patients requiring multiple or delayed procedures. J Arthroplast. 2012;27:870–6.

    Article  Google Scholar 

  71. Hinarejos P, Guirro P, Puig-Verdie L, Torres-Claramunt R, Leal-Blanquet J, Sanchez-Soler J, et al. Use of antibiotic-loaded cement in total knee arthroplasty. World J Orthop. 2015;6:877–85.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Joseph TN, Chen AL, Di Cesare PE. Use of antibiotic-impregnated cement in total joint arthroplasty. J Am Acad Orthop Surg. 2003;11:38–47.

    Article  PubMed  Google Scholar 

  73. van Kasteren MEE, Manniën J, Ott A, Kullberg B-J, de Boer AS, Gyssens IC. Antibiotic prophylaxis and the risk of surgical site infections following total hip arthroplasty: timely administration is the most important factor. Clin Infect Dis. 2007;44:921–7.

    Article  PubMed  Google Scholar 

  74. Arora M, Chan EK, Gupta S, Diwan AD. Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop. 2013;4:67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Penner MJ, Masri BA, Duncan CP. Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. J Arthroplast. 1996;11:939–44.

    Article  CAS  Google Scholar 

  76. Lautenschlager EP, Jacobs JJ, Marshall GW, Meyer PR. Mechanical properties of bone cements containing large doses of antibiotic powders. J Biomed Mater Res. 1976;10:929–38.

    Article  CAS  PubMed  Google Scholar 

  77. Awad SS, Palacio CH, Subramanian A, Byers PA, Abraham P, Lewis DA, et al. Implementation of a methicillin-resistant Staphylococcus aureus (MRSA) prevention bundle results in decreased MRSA surgical site infections. Am J Surg. 2009;198:607–10.

    Article  PubMed  Google Scholar 

  78. Mohd Fuad D, Masbah O, Shahril Y, Jamari S, Norhamdan MY, Sahrim SH. Biomechanical properties of bone cement with addition of cefuroxime antibiotic. Med J Malaysia. 2006;61(Suppl A):27–9.

    PubMed  Google Scholar 

  79. Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am. 2006;88:2487–500.

    PubMed  Google Scholar 

  80. Lewis G, Janna S, Bhattaram A. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement. Biomaterials. 2005;26:4317–25.

    Article  CAS  PubMed  Google Scholar 

  81. Bohm E, Zhu N, Gu J, de Guia N, Linton C, Anderson T, et al. Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty? Clin Orthop Relat Res. 2014;472:162–8.

    Article  PubMed  Google Scholar 

  82. Gutowski CJ, Zmistowski BM, Clyde CT, Parvizi J. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement. Bone Joint J. 2014;96-B:65–9.

    Article  CAS  PubMed  Google Scholar 

  83. Campbell KA, Phillips MS, Stachel A, Bosco JA, Mehta SA. Incidence and risk factors for hospital-acquired Clostridium difficile infection among inpatients in an orthopaedic tertiary care hospital. J Hosp Infect. 2013;83:146–9.

    Article  CAS  PubMed  Google Scholar 

  84. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carlos Rodríguez-Merchán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vaquero-Picado, A., Rodríguez-Merchán, E.C. (2018). Antibiotic Prophylaxis to Prevent Infection in Total Knee Arthroplasty. In: Rodríguez-Merchán, E., Oussedik, S. (eds) The Infected Total Knee Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-319-66730-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66730-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66729-4

  • Online ISBN: 978-3-319-66730-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics