Skip to main content

Machine Learning Models for Predicting Timely Virtual Machine Live Migration

  • Conference paper
  • First Online:
Computer Performance Engineering (EPEW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10497))

Included in the following conference series:

Abstract

Virtual machine (VM) consolidation is among the key strategic approaches that can be employed to reduce energy consumption in large computing infrastructure. However, live migration of VMs is not a trivial operation and consequently not all VMs can be easily consolidated in all circumstances. In this paper we present experiments attempting to live migrate the Kernel-based VM (KVM) executing workload form the SPECjvm2008 benchmark. In order to understand what factors influence live migration we investigate three machine learning models to predict successful live migration using different training and evaluation sets drawn from our experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A: Live migration of virtual machines. In: NSDI (2005)

    Google Scholar 

  2. KVM. http://www.linux-kvm.org. Accessed 5 May 2017

  3. SPECjvm2008. http://www.spec.org/jvm2008. Accessed 5 May 2017

  4. Strunk, A., Dargie, W.: Does live migration of virtual machines cost energy? In: IEEE AINA (2013)

    Google Scholar 

  5. Rybina, K., Patni, A., Schill, A.: Analysing the migration time of live migration of multiple virtual machines. In: CLOSER, pp. 590–597 (2014)

    Google Scholar 

  6. Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the performance of virtual machine migration. In: IEEE MASCOTS, pp. 37–46 (2010)

    Google Scholar 

  7. Hu, W., Hicks, A., Zhang, L., Dow, E.M., Soni, V., Jiang, H., Bull, R., Matthews, J.N.: A quantitative study of virtual machine live migration. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, p. 11. ACM (2013)

    Google Scholar 

  8. McGough, A.S., Moubayed, N.A., Forshaw, M.: Using machine learning in trace-driven energy-aware simulations of high-throughput computing systems. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion, pp. 55–60. ACM (2017)

    Google Scholar 

  9. Uriarte, R.B., Tiezzi, F., Tsaftaris, S.A.: Supporting autonomic management of clouds: service clustering with random forest. IEEE Trans. Netw. Serv. Manage. 13(3), 595–607 (2016)

    Article  Google Scholar 

  10. Openfiler. http://www.openfiler.com. Accessed 5 May 2017

  11. Alrajeh, O.: VM live migration script. http://www.github.com/oalrajeh/VM_Live_Migration. Accessed 5 May 2017

  12. Memusg. https://gist.github.com/netj/526585. Accessed 5 May 2017

  13. Kuhn, M.: Caret package. J. Stat. Softw. 28(5), 1–26 (2008)

    Article  Google Scholar 

  14. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2016)

    Google Scholar 

  15. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ridgeway, G.: Generalized boosted models: a guide to the GBM package. Update 1(1), 2007 (2007)

    Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  18. Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. 1, vol. 3. Wiley, New York (1968)

    MATH  Google Scholar 

  19. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  20. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Article  Google Scholar 

  21. Ling, C.X., Huang, J., Zhang, H.: AUC: a better measure than accuracy in comparing learning algorithms. In: Xiang, Y., Chaib-draa, B. (eds.) AI 2003. LNCS, vol. 2671, pp. 329–341. Springer, Heidelberg (2003). doi:10.1007/3-540-44886-1_25

    Chapter  Google Scholar 

  22. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145, Stanford, CA (1995)

    Google Scholar 

  23. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(1), 1–26 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Alrajeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alrajeh, O., Forshaw, M., Thomas, N. (2017). Machine Learning Models for Predicting Timely Virtual Machine Live Migration. In: Reinecke, P., Di Marco, A. (eds) Computer Performance Engineering. EPEW 2017. Lecture Notes in Computer Science(), vol 10497. Springer, Cham. https://doi.org/10.1007/978-3-319-66583-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66583-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66582-5

  • Online ISBN: 978-3-319-66583-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics