Skip to main content
  • 1038 Accesses

Abstract

Spin dynamics in ferromagnetic thin films, nanostructures, and heterostructures have drawn significant attention due to the application potential in various magnetic devices and the fundamental physics involved in it. In this book, we have described, in reasonable detail, the spin dynamics in various systems starting from its historical evolution. We reviewed experimental and theoretical results related to the ultrafast demagnetization, relaxation, magnetization precession, and magnetic damping in ferromagnetic metallic thin films, bilayers, and nanostructures with a particular focus on these systems when excited by femtosecond (fs) optical pulses. In order to better understand the experimental techniques, theoretical backgrounds of magnetization dynamics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Beaurepaire E, Merle JC, Daunois A, Bigot JY (1996) Ultrafast spin dynamics in ferromagnetic nickel. Phys Rev Lett 76(22):4250–4253. doi:10.1103/PhysRevLett.76.4250

    Article  Google Scholar 

  2. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40(6):3443–3449. doi:10.1109/tmag.2004.836740

    Article  Google Scholar 

  3. Woltersdorf G, Heinrich B (2004) Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations. Phys Rev B 69(18):184417. doi:10.1103/PhysRevB.69.184417

    Article  Google Scholar 

  4. van Kampen M, Jozsa C, Kohlhepp JT, LeClair P, Lagae L, de Jonge WJM, Koopmans B (2002) All-optical probe of coherent spin waves. Phys Rev Lett 88(22):227201. doi:10.1103/PhysRevLett.88.227201

    Article  Google Scholar 

  5. Pal S, Rana B, Hellwig O, Thomson T, Barman A (2011) Tunable magnonic frequency and damping in [Co/Pd]8 multilayers with variable Co layer thickness. Appl Phys Lett 98(8):082501. doi:10.1063/1.3559222

    Article  Google Scholar 

  6. Mann A, Walowski J, Münzenberg M, Maat S, Carey MJ, Childress JR, Mewes C, Ebke D, Drewello V, Reiss G, Thomas A (2012) Insights into ultrafast demagnetization in pseudogap half-metals. Phys Rev X 2(4):041008. doi:10.1103/PhysRevX.2.041008

    Google Scholar 

  7. Garello K, Miron IM, Avci CO, Freimuth F, Mokrousov Y, Bluegel S, Auffret S, Boulle O, Gaudin G, Gambardella P (2013) Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotechnol 8(8):587–593. doi:10.1038/nnano.2013.145

    Article  Google Scholar 

  8. Ganguly A, Azzawi S, Saha S, King JA, Rowan-Robinson RM, Hindmarch AT, Sinha J, Atkinson D, Barman A (2015) Tunable magnetization dynamics in interfacially modified Ni81Fe19/Pt bilayer thin film microstructures. Sci Rep 5:17596. doi:10.1038/srep17596

    Article  Google Scholar 

  9. King JA, Ganguly A, Burn DM, Pal S, Sallabank EA, Hase TPA, Hindmarch AT, Barman A, Atkinson D (2014) Local control of magnetic damping in ferromagnetic/non-magnetic bilayers by interfacial intermixing induced by focused ion-beam irradiation. Appl Phys Lett 104(24):242410. doi:10.1063/1.4883860

    Article  Google Scholar 

  10. Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson RM, Sinha J, Hindmarch AT, Barman A, Atkinson D (2016) Evolution of damping in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness. Phys Rev B 93(5):054402. doi:10.1103/PhysRevB.93.054402

    Article  Google Scholar 

  11. Barati E, Cinal M, Edwards DM, Umerski A (2014) Gilbert damping in magnetic layered systems. Phys Rev B 90(1) doi:10.1103/PhysRevB.90.014420

  12. Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H (2014) Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat. Commun. 5 (article number 4655). doi:10.1038/ncomms5655

  13. Lambert CH, Mangin S, Varaprasad B, Takahashi YK, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton EE (2014) All-optical control of ferromagnetic thin films and nanostructures. Science 345(6202):1337–1340. doi:10.1126/science.1253493

    Article  Google Scholar 

  14. Hoffmann A, Bader SD (2015) Opportunities at the frontiers of spintronics. Phys Rev Appl 4(4):047001. doi:10.1103/PhysRevApplied.4.047001

    Article  Google Scholar 

  15. Hellman F, Hoffmann A, Tserkovnyak Y, Beach G, Fullerton E, Leighton C, MacDonald A, Ralph D, Arena D, Durr H, Fischer P, Grollier J, Heremans J, Jungwirth T, Kimmel A, Koopmans B, Krivorotov I, May S, Petford-Long A, Rondinelli J, Samarth N, Schuller I, Slavin A, Stiles M, Tchernyshyov O, Thiaville A, Zink B (2017) Interface-induced phenomena in magnetism. Rev Mod Phys 89(2):025006. doi:10.1103/RevModPhys.89.025006

  16. Demidov VE, Urazhdin S, Edwards ERJ, Stiles MD, McMichael RD, Demokritov SO (2011) Control of magnetic fluctuations by spin current. Phys Rev Lett 107(10):107204. doi:10.1103/PhysRevLett.107.107204

    Article  Google Scholar 

  17. Demidov VE, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov SO (2012) Magnetic nano-oscillator driven by pure spin current. Nat Mater 11(12):1028–1031. doi:10.1038/nmat3459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Barman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, A., Sinha, J. (2018). Summary and Future Direction. In: Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-66296-1_8

Download citation

Publish with us

Policies and ethics