Skip to main content

Experimental Techniques to Investigate Spin Dynamics

  • Chapter
  • First Online:
Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures
  • 1127 Accesses

Abstract

As discussed in the Chap. 2, the time scale for magnetization dynamics varies from microseconds (μs) to femtoseconds (fs) which depends on the mechanism involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phy. 82(3):2731–2784. doi:10.1103/RevModPhys.82.2731

    Article  Google Scholar 

  2. Barman A, Haldar A (2014) Time-domain study of magnetization dynamics in magnetic thin films and micro-and nanostructures. In: Camley RE and Stamps RL (ed) Solid State Physics, vol 65, pp 1–108. Elsevier doi:10.1016/B978-0-12-800175-2.00001-7

  3. Kittel C (1948) On the theory of ferromagnetic resonance absorption. Phy Rev 73(2):155–161. doi:10.1103/PhysRev.73.155

    Article  Google Scholar 

  4. Denysenkov VP, Grishin AM (2003) Broadband ferromagnetic resonance spectrometer. Rev Sci Instrum 74(7):3400–3405. doi:10.1063/1.1581395

    Article  Google Scholar 

  5. Brillouin L (1922) Diffusion of light and X-rays by a transparent homogeneous body. Ann Phys 17:88

    Article  Google Scholar 

  6. Demokritov SO, Hillebrands B, Slavin AN (2001) Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phy Rep 348(6):441–489. doi:10.1016/S0370-1573(00)00116-2

    Article  Google Scholar 

  7. Silva TJ, Lee CS, Crawford TM, Rogers CT (1999) Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy. J Appl Phy 85(11):7849–7862. doi:10.1063/1.370596

    Article  Google Scholar 

  8. Freeman MR, Brady MJ, Smyth J (1992) Extremely high frequency pulse magnetic resonance by picosecond magneto-optic sampling. Appl Phy Lett 60(20):2555–2557. doi:10.1063/1.106911

    Article  Google Scholar 

  9. van Kampen M, Jozsa C, Kohlhepp JT, LeClair P, Lagae L, de Jonge WJM, Koopmans B (2002) All-optical probe of coherent spin waves. Phys Rev Lett 88(22):227201. doi:10.1103/PhysRevLett.88.227201

    Article  Google Scholar 

  10. Hiebert WK, Stankiewicz A, Freeman MR (1997) Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy. Phys Rev Lett 79(6):1134–1137. doi:10.1103/PhysRevLett.79.1134

    Article  Google Scholar 

  11. Barman A, Wang SQ, Maas JD, Hawkins AR, Kwon S, Liddle A, Bokor J, Schmidt H (2006) Magneto-optical observation of picosecond dynamics of single nanomagnets. Nano Lett 6(12):2939–2944. doi:10.1021/nl0623457

    Article  Google Scholar 

  12. Kerr J (1877) On rotation of the plane of polarization by reflection from the pole of a magnet. Philos Mag Ser 3(19):321–343. doi:10.1080/14786447708639245

    Article  Google Scholar 

  13. Hulme HR (1932) The Faraday effect in ferromagnetics. Proc R Soc Lond Ser A 135(826):237–257. doi:10.1098/rspa.1932.0032

    Article  Google Scholar 

  14. Argyres PN (1955) Theory of the Faraday and Kerr effects in ferromagnetics. Phys Rev 97(2):334–345. doi:10.1103/PhysRev.97.334

    Article  Google Scholar 

  15. Roth LM (1964) Theory of the Faraday effect in solids. Phys. Rev 133(2A):A542–A553. doi:10.1103/PhysRev.133.A542

    Article  Google Scholar 

  16. Kubo R (1956) A general expression for the conductivity tensor. Can J Phys 34(12A):1274–1277. doi:10.1139/p56-140

    Article  Google Scholar 

  17. Koopmans B (2002) Laser induced magnetization dynamics. In: Hillebrands B, Ounadjela K (eds) Spin Dynamics in Confined Magnetic Structures II. Springer, New York, pp 253–312

    Google Scholar 

  18. Razdolski I, Alekhin A, Martens U, Bürstel D, Diesing D, Münzenberg M, Bovensiepen U, Melnikov A (2017) Analysis of the time-resolved magneto-optical Kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films. J Phys Condens Matter 29(17):174002. doi:10.1088/1361-648X/aa63c6

    Google Scholar 

  19. Zhang GP, Hübner W (2000) Laser-induced ultrafast demagnetization in ferromagnetic metals. Phys Rev Lett 85(14):3025–3028. doi:10.1103/PhysRevLett.85.3025

    Article  Google Scholar 

  20. Dietrich W, Proebster WE (1960) Millimicrosecond magnetization reversal in thin magnetic films. J Appl Phys 31(5):S281–S282. doi:10.1063/1.1984700

    Article  Google Scholar 

  21. Wolf P (1961) Free oscillations of the magnetization in permalloy films. J Appl Phys 32(3):S95–S96. doi:10.1063/1.2000514

    Article  Google Scholar 

  22. Freeman MR, Ruf RR, Gambino RJ (1991) Picosecond pulsed magnetic fields for studies of ultrafast magnetic phenomena. IEEE Trans Magn 27(6):4840–4842. doi:10.1109/20.278964

    Article  Google Scholar 

  23. Koopmans B (2003) Laser induced magnetization dynamics. In: Hillebrands B, Ounadjela K (eds) Spin Dynamics in Confined Magnetic Structures II. Springer, New York, pp 253–312

    Google Scholar 

  24. Bigot JY, Guidoni L, Beaurepaire E, Saeta PN (2004) Femtosecond spectrotemporal magneto-optics. Phys Rev Lett 93(7):077401. doi:10.1103/PhysRevLett.93.077401

    Article  Google Scholar 

  25. Barman A, Kimura T, Otani Y, Fukuma Y, Akahane K, Meguro S (2008) Benchtop time-resolved magneto-optical Kerr magnetometer. Rev Sci Instrum 79(12):123905. doi:10.1063/1.3053353

    Article  Google Scholar 

  26. Barman A, Barman S, Kimura T, Fukuma Y, Otani Y (2010) Gyration mode splitting in magnetostatically coupled magnetic vortices in an array. J Phys D Appl Phys 43(42):422001. doi:10.1088/0022-3727/43/42/422001

    Article  Google Scholar 

  27. Stotz JAH, Freeman MR (1997) A stroboscopic scanning solid immersion lens microscope. Rev Sci Instrum 68(12):4468–4477. doi:10.1063/1.1148416

    Article  Google Scholar 

  28. Park JP, Eames P, Engebretson DM, Berezovsky J, Crowell PA (2002) Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires. Phys Rev Lett 89(27):277201. doi:10.1103/PhysRevLett.89.277201

    Article  Google Scholar 

  29. Neudert A, Keatley PS, Kruglyak VV, McCord J, Hicken RJ (2008) Excitation and imaging of precessional modes in soft-magnetic squares. IEEE Trans Magn 44(11):3083–3086. doi:10.1109/tmag.2008.2001653

    Article  Google Scholar 

  30. Barman A, Kruglyak VV, Hicken RJ, Rowe JM, Kundrotaite A, Scott J, Rahman M (2004) Imaging the dephasing of spin wave modes in a square thin film magnetic element. Phys Rev B 69(17):174426. doi:10.1103/PhysRevB.69.174426

    Article  Google Scholar 

  31. Barman A, Sharma RC (2007) Micromagnetic study of picosecond dephasing of spin waves in a square magnetic element. J Appl Phys 102(5):053912. doi:10.1063/1.2776233

    Article  Google Scholar 

  32. Raman CV (1928) A change of wave-length in light scattering. Nature 121:619. doi:10.1038/121619b0

    Article  Google Scholar 

  33. Gammon PH, Kiefte H, Clouter MJ (1983) Elastic constants of ice samples by Brillouin spectroscopy. J Phys Chem 87(21):4025–4029. doi:10.1021/j100244a004

    Article  Google Scholar 

  34. Li F, Cui Q, He Z, Cui T, Zhang J, Zhou Q, Zou G, Sasaki S (2005) High pressure-temperature Brillouin study of liquid water: evidence of the structural transition from low-density water to high-density water. J Chem Phys 123(17):174511. doi:10.1063/1.2102888

    Article  Google Scholar 

  35. Courtens E, Pelous J, Phalippou J, Vacher R, Woignier T (1987) Brillouin-scattering measurements of phonon-fracton crossover in silica aerogels. Phys Rev Lett 58(2):128–131. doi:10.1103/PhysRevLett.58.128

    Article  Google Scholar 

  36. Reiß S, Burau G, Stachs O, Guthoff R, Stolz H (2011) Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed Opt Express 2(8):2144–2159. doi:10.1364/boe.2.002144

    Article  Google Scholar 

  37. Mandelstam LI (1926) Light scattering by inhomogeneous media. Zh Russ Fiz-Khim Ova 58:381

    Google Scholar 

  38. Gross E (1930) Change of wave-length of light due to elastic heat waves at scattering in liquids. Nature 126:201–202. doi:10.1038/126201a0

    Article  Google Scholar 

  39. Sandercock JR (1971) Paper presented at the second international conference on light scattering in solids, Flammarion, Paris

    Google Scholar 

  40. Mock R, Hillebrands B, Sandercock R (1987) Construction and performance of a Brillouin scattering set-up using a triple-pass tandem Fabry-Perot interferometer. J Phys E: Sci Instrum 20(6):656. doi:10.1088/0022-3735/20/6/017

    Article  Google Scholar 

  41. Wettling W, Smith RS, Jantz W, Ganser PM (1982) Single crystal Fe films grown on GaAs substrates. J Magn Magn Mater 28(3):299–304. doi:10.1016/0304-8853(82)90063-4

    Article  Google Scholar 

  42. Sandercock J, Wettling W (1978) Light scattering from thermal magnons in Iron and Nickel. IEEE Trans Magn 14(5):442–444. doi:10.1109/tmag.1978.1059895

    Article  Google Scholar 

  43. Sandercock J (1999) Operator manual for the tandem Fabry-Perot interferometer

    Google Scholar 

  44. Demidov VE, Demokritov SO, Hillebrands B, Laufenberg M, Freitas PP (2004) Radiation of spin waves by a single micrometer-sized magnetic element. Appl Phys Lett 85(14):2866–2868. doi:10.1063/1.1803621

    Article  Google Scholar 

  45. Gubbiotti G, Carlotti G, Madami M, Tacchi S, Vavassori P, Socino G (2009) Setup of a new brillouin light scattering apparatus with submicrometric lateral resolution and its application to the study of spin modes in nanomagnets. J Appl Phys. 105(7):07D521. doi:10.1063/1.3068428

    Article  Google Scholar 

  46. Serga AA, Schneider T, Hillebrands B, Demokritov SO, Kostylev MP (2006) Phase-sensitive Brillouin light scattering spectroscopy from spin-wave packets. Appl Phys Lett 89(6):063506. doi:10.1063/1.2335627

    Article  Google Scholar 

  47. Vogt K, Schultheiss H, Hermsdoerfer SJ, Pirro P, Serga AA, Hillebrands B (2009) All-optical detection of phase fronts of propagating spin waves in a Ni81Fe19 microstripe. Appl Phys Lett 95(18):182508. doi:10.1063/1.3262348

    Article  Google Scholar 

  48. Fohr F, Serga AA, Schneider T, Hamrle J, Hillebrands B (2009) Phase sensitive Brillouin scattering measurements with a novel magneto-optic modulator. Rev Sci Instrum 80(4):043903. doi:10.1063/1.3115210

    Article  Google Scholar 

  49. Bauer M, Büttner O, Demokritov SO, Hillebrands B, Grimalsky V, Rapoport Y, Slavin AN (1998) Observation of spatiotemporal self-focusing of spin waves in magnetic films. Phys Rev Lett 81(17):3769–3772. doi:10.1103/PhysRevLett.81.3769

    Article  Google Scholar 

  50. Serga AA, Demokritov SO, Hillebrands B, Slavin AN (2004) Self-generation of two-dimensional spin-wave bullets. Phys Rev Lett 92(11):117203. doi:10.1103/PhysRevLett.92.117203

    Article  Google Scholar 

  51. Schultheiss H, Sandweg CW, Obry B, Hermsdörfer S, Schäfer S, Leven B, Hillebrands B (2008) Dissipation characteristics of quantized spin waves in nano-scaled magnetic ring structures. J Phys D Appl Phys 41(16):164017. doi:10.1088/0022-3727/41/16/164017

    Article  Google Scholar 

  52. Haldar A, Banerjee C, Laha P, Barman A (2014) Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films. J Appl Phys 115(13):133901. doi:10.1063/1.4870053

    Article  Google Scholar 

  53. Banerjee C, Chaurasiya AK, Saha S, Sinha J, Barman A (2015) Tunable spin wave properties in [Co/Ni80Fe20]r multilayers with the number of bilayer repetition. J Phys D-Appl Phys 48(39):395001. doi:10.1088/0022-3727/48/39/395001

    Article  Google Scholar 

  54. Banerjee C, Pal S, Ahlberg M, Nguyen TNA, Akerman J, Barman A (2016) All-optical study of tunable ultrafast spin dynamics in Co/Pd/NiFe systems: the role of spin-twist structure on Gilbert damping. RSC Adv 6(83):80168–80173. doi:10.1039/c6ra12227b

    Article  Google Scholar 

  55. Banerjee C, Loong LM, Srivastava S, Pal S, Qiu XP, Yang H, Barman A (2016) Improvement of chemical ordering and magnetization dynamics of Co-Fe-Al-Si Heusler alloy thin films by changing adjacent layers. RSC Adv 6(81):77811–77817. doi:10.1039/c6ra05535d

    Article  Google Scholar 

  56. Sinha J, Banerjee C, Chaurasiya AK, Hayashi M, Barman A (2015) Improved magnetic damping in CoFeB|MgO with an N-doped Ta underlayer investigated using the Brillouin light scattering technique. RSC Adv 5(71):57815–57819. doi:10.1039/c5ra06925d

    Article  Google Scholar 

  57. Chaurasiya AK, Banerjee C, Pan S, Sahoo S, Choudhury S, Sinha J, Barman A (2016) Direct observation of interfacial Dzyaloshinskii-Moriya interaction from asymmetric spin-wave propagation in W/CoFeB/SiO2 heterostructures down to sub-nanometer CoFeB thickness. Sci Rep 6:32592. doi:10.1038/srep32592

    Article  Google Scholar 

  58. Griffiths JHE (1946) Anomalous high-frequency resistance of ferromagnetic metals. Nature 158(4019):670

    Article  Google Scholar 

  59. Bady I (1967) Measurement of linewidth of single crystal ferrites by monitoring the reflected wave in short-circuited transmission line. IEEE Trans Magn 3(3):521–526. doi:10.1109/tmag.1967.1066105

    Article  Google Scholar 

  60. Kalarickal SS, Krivosik P, Wu M, Patton CE, Schneider ML, Kabos P, Silva TJ, Nibarger JP (2006) Ferromagnetic resonance linewidth in metallic thin films: comparison of measurement methods. J Appl Phys 99(9):093909. doi:10.1063/1.2197087

    Article  Google Scholar 

  61. Michael F (1998) Ferromagnetic resonance of ultrathin metallic layers. Rep Prog Phys 61(7):755. doi:10.1088/0034-4885/61/7/001

    Article  Google Scholar 

  62. Celinski Z, Heinrich B (1991) Ferromagnetic resonance linewidth of Fe ultrathin films grown on a bcc Cu substrate. J Appl Phys 70(10):5935–5937. doi:10.1063/1.350110

    Article  Google Scholar 

  63. Barry W (1986) A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability. IEEE Trans Microw Theory Tech 34(1):80–84. doi:10.1109/tmtt.1986.1133283

    Article  Google Scholar 

  64. Giesen F, Podbielski J, Korn T, Steiner M, van Staa A, Grundler D (2005) Hysteresis and control of ferromagnetic resonances in rings. Appl Phys Lett 86(11):112510. doi:10.1063/1.1886247

    Article  Google Scholar 

  65. Neusser S, Botters B, Becherer M, Schmitt-Landsiedel D, Grundler D (2008) Spin-wave localization between nearest and next-nearest neighboring holes in an antidot lattice. Appl Phys Lett 93(12):122501. doi:10.1063/1.2988290

    Article  Google Scholar 

  66. Choudhury S, Saha S, Mandal R, Barman S, Otani Y, Barman A (2016) Shape- and interface-induced control of spin dynamics of two-dimensional bicomponent magnonic crystals. ACS Appl Mater Interfaces 8(28):18339–18346. doi:10.1021/acsami.6b04011

    Article  Google Scholar 

  67. Neusser S, Grundler D (2009) Magnonics: spin waves on the nanoscale. Adv Mater 21(28):2927–2932. doi:10.1002/adma.200900809

    Article  Google Scholar 

  68. Krawczyk M, Grundler D (2014) Review and prospects of magnonic crystals and devices with reprogrammable band structure. J Phys: Condens Matter 26(12):123202. doi:10.1088/0953-8984/26/12/123202

    Google Scholar 

  69. Mahato BK, Choudhury S, Mandal R, Barman S, Otani Y, Barman A (2015) Tunable configurational anisotropy in collective magnetization dynamics of Ni80Fe20 nanodot arrays with varying dot shapes. J Appl Phys 117(21):213909. doi:10.1063/1.4921976

    Article  Google Scholar 

  70. Neudecker I, Woltersdorf G, Heinrich B, Okuno T, Gubbiotti G, Back CH (2006) Comparison of frequency, field, and time domain ferromagnetic resonance methods. J Magn Magn Mater 307(1):148–156. doi:10.1016/j.jmmm.2006.03.060

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Barman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, A., Sinha, J. (2018). Experimental Techniques to Investigate Spin Dynamics. In: Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-66296-1_4

Download citation

Publish with us

Policies and ethics