Skip to main content

Abstract

In this chapter, we focus on various aspects of magnetic damping. As described in the previous chapters, in a ferromagnetic system the spin dynamics is described by using Landau–Lifshitz–Gilbert (LLG) equation in which a phenomenological parameter α defines a magnetization relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gilbert TL (1955) A lagrangian formulation of the gyromagnetic equation of the magnetic field. Phys Rev 100:1243

    Google Scholar 

  2. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40(6):3443–3449. doi:10.1109/tmag.2004.836740

  3. Kamberský V (1976) On ferromagnetic resonance damping in metals. Czech J Phys B 26(12):1366–1383. doi:10.1007/bf01587621

  4. Heinrich B, Bland JAC (2005) Spin relaxation in magnetic metallic layers and multilayers. In: Bland JAC (ed) Ultrathin magnetic structures: fundamentals of nanomagnetism, vol 3. Springer, New York

    Google Scholar 

  5. Landau L, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion 8(153):101–114

    Google Scholar 

  6. Kittel C (1948) On the theory of ferromagnetic resonance absorption. Phys Rev 73(2):155–161. doi:10.1103/PhysRev.73.155

  7. Heinrich B, Cochran JF (1993) Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions. Adv Phys 42(5):523–639. doi:10.1080/00018739300101524

  8. Kamberský V (1984) FMR linewidth and disorder in metals. Czech J Phys B 34(10):1111–1124. doi:10.1007/bf01590106

  9. Foros J, Woltersdorf G, Heinrich B, Brataas A (2005) Scattering of spin current injected in Pd(001). J Appl Phys 97(10):10A714. doi:10.1063/1.1853131

  10. Heinrich B, Urban R, Woltersdorf G (2002) Magnetic relaxations in metallic multilayers. IEEE Trans Magn 38(5):2496–2501. doi:10.1109/tmag.2002.801906

  11. van Kampen M, Jozsa C, Kohlhepp JT, LeClair P, Lagae L, de Jonge WJM, Koopmans B (2002) All-optical probe of coherent spin waves. Phys Rev Lett 88(22):227201. doi:10.1103/PhysRevLett.88.227201

  12. Barman A, Wang S, Maas JD, Hawkins AR, Kwon S, Liddle A, Bokor J, Schmidt H (2006) Magneto-optical observation of picosecond dynamics of single nanomagnets. Nano Lett 6(12):2939–2944. doi:10.1021/nl0623457

  13. Gilmore K (2007) Precession damping in itinerant ferromagnets, Ph.D. Thesis, Chapter 3. Montana State University

    Google Scholar 

  14. He P, Ma X, Zhang JW, Zhao HB, Lüpke G, Shi Z, Zhou SM (2013) Quadratic scaling of intrinsic Gilbert damping with spin-orbital coupling in L10 FePdPt films: experiments and ab initio calculations. Phys Rev Lett 110(7):077203. doi:10.1103/PhysRevLett.110.077203

  15. Suhl H (1998) Theory of the magnetic damping constant. IEEE Trans Magn 34(4):1834–1838. doi:10.1109/20.706720

  16. Heinrich B, Cochran JF, Myrtle K (1982) The exchange splitting of phonon assisted microwave transmission at 9.5 GHz. J Appl Phys 53(3):2092–2094. doi:10.1063/1.330708

  17. Ament WS, Rado GT (1955) Electromagnetic effects of spin wave resonance in ferromagnetic metals. Phys Rev 97(6):1558–1566. doi:10.1103/PhysRev.97.1558

  18. Cochran JF, Heinrich B, Arrott AS (1986) Ferromagnetic resonance in a system composed of a ferromagnetic substrate and an exchange-coupled thin ferromagnetic overlayer. Phys Rev B 34(11):7788–7801. doi:10.1103/PhysRevB.34.7788

  19. Heinrich B, Fraitová D, Kamberský V (1967) The influence of s-d exchange on relaxation of magnons in metals. Phys Status Solidi (b) 23(2):501–507. doi:10.1002/pssb.19670230209

  20. McMichael RD, Twisselmann DJ, Kunz A (2003) Localized ferromagnetic resonance in inhomogeneous thin films. Phys Rev Lett 90(22):227601. doi:10.1103/PhysRevLett.90.227601

  21. McMichael RD, Twisselmann DJ, Bonevich JE, Chen AP, Egelhoff WFE Jr, Russek SE (2002) Ferromagnetic resonance mode interactions in periodically perturbed films. J Appl Phys 91(10):8647–8649. doi:10.1063/1.1456382

  22. McMichael RD, Krivosik P (2004) Classical model of extrinsic ferromagnetic resonance linewidth in ultrathin films. IEEE Trans Magn 40(1):2–11. doi:10.1109/tmag.2003.821564

  23. Sparks M, Loudon R, Kittel C (1961) Ferromagnetic relaxation. I. theory of the relaxation of the uniform precession and the degenerate spectrum in insulators at low temperatures. Phys Rev 122(3):791–803. doi:10.1103/PhysRev.122.791

  24. Patton CE, Wilts CH, Humphrey FB (1967) Relaxation processes for ferromagnetic resonance in thin films. J Appl Phys 38(3):1358–1359. doi:10.1063/1.1709621

  25. Arias R, Mills DL (1999) Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys Rev B 60(10):7395–7409. doi:10.1103/PhysRevB.60.7395

  26. Woltersdorf G, Heinrich B (2004) Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations. Phys Rev B 69(18):184417. doi:10.1103/PhysRevB.69.184417

  27. Mills DL, Rezende S (eds) (2003) Spin damping in ultrathin magnetic films. Springer, Berlin

    Google Scholar 

  28. Woltersdorf G (2004) Spin-pumping and two magnon scattering in magnetic multilayers, Ph.D. Thesis, Chapter 2. Simon Fraser University

    Google Scholar 

  29. Hurben MJ, Patton CE (1998) Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films. J Appl Phys 83(8):4344–4365. doi:10.1063/1.367194

  30. Twisselmann DJ, McMichael RD (2003) Intrinsic damping and intentional ferromagnetic resonance broadening in thin permalloy films. J Appl Phys 93(10):6903–6905. doi:10.1063/1.1543884

  31. Kriessman CJ, Callen HB (1954) The magnetic susceptibility of the transition elements. Phys Rev 94(4):837–844. doi:10.1103/PhysRev.94.837

  32. Ingvarsson S, Ritchie L, Liu XY, Xiao G, Slonczewski JC, Trouilloud PL, Koch RH (2002) Role of electron scattering in the magnetization relaxation of thin Ni81Fe19 films. Phys Rev B 66(21):214416. doi:10.1103/PhysRevB.66.214416

  33. Kamberský V (1970) On the landau-lifshitz relaxation in ferromagnetic metals. Can J Phys 48(24):2906–2911. doi:10.1139/p70-361

  34. Kuneš J, Kamberský V (2002) First-principles investigation of the damping of fast magnetization precession in ferromagnetic 3d metals. Phys Rev B 65(21):212411. doi:10.1103/PhysRevB.65.212411

  35. Kuneš J, Kamberský V (2003) Erratum: first-principles investigation of the damping of fast magnetization precession in ferromagnetic 3d metals [Phys Rev B 65:212411 (2002)]. Phys Rev B 68(1):019901. doi:10.1103/PhysRevB.68.019901

  36. Steiauf D, Fähnle M (2005) Damping of spin dynamics in nanostructures: An ab initio study. Phys Rev B 72(6):064450. doi:10.1103/PhysRevB.72.064450

  37. Fahnle M, Steiauf D (2006) Breathing fermi surface model for noncollinear magnetization: a generalization of the Gilbert equation. Phys Rev B 73(18):184427. doi:10.1103/PhysRevB.73.184427

  38. Fahnle M, Seib J, Illg C (2010) Relating Gilbert damping and ultrafast laser-induced demagnetization. Phys Rev B 82(14):144405. doi:10.1103/PhysRevB.82.144405

  39. Koopmans B, Ruigrok JJM, Longa FD, de Jonge WJM (2005) Unifying ultrafast magnetization dynamics. Phys Rev Lett 95(26):267207. doi:10.1103/PhysRevLett.95.267207

  40. Fahnle M, Illg C (2011) Electron theory of fast and ultrafast dissipative magnetization dynamics. J Phys-Condens Matt 23(49):493201. doi:10.1088/0953-8984/23/49/493201

  41. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev B 66(22):224403. doi:10.1103/PhysRevB.66.224403

  42. Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77(4):1375–1421. doi:10.1103/RevModPhys.77.1375

  43. Brataas A, Tserkovnyak Y, Bauer GEW (2011) Magnetization dissipation in ferromagnets from scattering theory. Phys Rev B 84(5):054416. doi:10.1103/PhysRevB.84.054416

  44. Mizukami S, Sajitha EP, Watanabe D, Wu F, Miyazaki T, Naganuma H, Oogane M, Ando Y (2010) Gilbert damping in perpendicularly magnetized Pt/Co/Pt films investigated by all-optical pump-probe technique. Appl Phys Lett 96(15):152502. doi:10.1063/1.3396983

  45. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett 88(11):117601. doi:10.1103/PhysRevLett.88.117601

  46. Pal S, Rana B, Hellwig O, Thomson T, Barman A (2011) Tunable magnonic frequency and damping in [Co/Pd]8 multilayers with variable Co layer thickness. Appl Phys Lett 98(8):082501. doi:10.1063/1.3559222

  47. Ganguly A, Azzawi S, Saha S, King JA, Rowan-Robinson RM, Hindmarch AT, Sinha J, Atkinson D, Barman A (2015) Tunable magnetization dynamics in interfacially modified Ni81Fe19/Pt bilayer thin film microstructures. Sci Rep 5:17596. doi:10.1038/srep17596

  48. Mizukami S, Ando Y, Miyazaki T (2001) The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) films. Jpn J Appl Phys 40(2A):580–585. doi:10.1143/jjap.40.580

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Barman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, A., Sinha, J. (2018). Magnetic Damping. In: Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-66296-1_3

Download citation

Publish with us

Policies and ethics