Skip to main content

Risk and Water Management Under Climate Change: Towards the Nexus City

  • Chapter
  • First Online:
Sustainable Risk Management

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

To address climate change-related risk more effectively, urgent action is needed by cities to curb their consumption of natural resources, particularly water. Operationalizing the Water–Energy–Food Nexus is a possible solution for both developed and developing economies, but requires a paradigm shift, with strong policy support by national and local governments, as well as in-depth study and testing through pilot projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • ADB. (2013). Thinking about water differently: managing the Water–Food–Energy Nexus (pp. 47). Mandaluyong City, Philippines: Asian Development Bank (ADB).

    Google Scholar 

  • AWM (Abfallwirtschaft München (City of Munich Solid Waste Management Unit)). (2015). Personal communication with Mr. D. Santl by email, 17.07.15.

    Google Scholar 

  • AWWA. (2012). Buried no longer: confronting America’s Water Infrastructure Challenge (p. 37). USA: American Water Works Association, Boulder, Colorado.

    Google Scholar 

  • City of Munich. (2014). Perspektive München Leitlinie Ökologie: Teil Klimawandel und Klimaschutz (Perspective Munich: Guideline ecology: chapter climate change and climate change mitigation) (pp. 40). City of Munich, Germany. (in German).

    Google Scholar 

  • City of Munich Statistical Department. (2014). Statistisches Taschenbuch (Statistical Pocketbook). (pp. 195). City of Munich (in German).

    Google Scholar 

  • Credit Suisse Research Institute. (2015). Global Wealth Report 2015 (pp. 64). Credit Suisse.

    Google Scholar 

  • Drewes, J. E. (2014). Re-inventing urban water infrastructure—Creating flexible and resilient solutions for urban and rural areas. Proceedings, Intelligent Peri-Urbanization through Decentralization: Towards an overarching approach to Sustainable Water Management. IFAT 2014, May 6, International Congress Centre Munich, Germany.

    Google Scholar 

  • Galea, S., & Vlahov, D. (2005). Urban health: Evidence, challenges and directions. Annual Review of Public Health, 26, 341–365.

    Article  Google Scholar 

  • GWSP (2014). Call to action: For implementing the water-energy-food nexus. May 20th 2014, Global Water System Project (GWSP), Bonn, Germany (pp. 4).

    Google Scholar 

  • IEA. (2009). World Energy Outlook 2009 (p. 698). International Energy Agency, Paris: France.

    Google Scholar 

  • IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland (pp. 151).

    Google Scholar 

  • LfU (Bayerisches Landesamt für Umwelt (Bavarian State Department for Environment)). (2012). Der Klimawandel in Bayern: Auswertung regionaler Klimaprojektionen. Klimabericht Bayern (Report on climate change in Bavaria) (pp. 22) (in German).

    Google Scholar 

  • LGW (Landesanstalt für Weinbau und Gartenbau (Bavarian State Institute for Viticulture and Horticulture)). (2015). Personal communication with Ms M. Scheu-Helgert, LGW, by phone, 01.10.15.

    Google Scholar 

  • Marcotullio, P. J. (2007). Urban water-related environmental transitions in Southeast Asia. Sustainability Science, 2, 27–54.

    Article  Google Scholar 

  • Meadows, D. H., Meadows, D. L., Randers, J., & Behrens III, W. W. (1972). The limits to growth (pp. 205). Club of Rome.

    Google Scholar 

  • Moss, T. (2008). ‘Cold spots’ of urban infrastructure: ‘Shrinking’ processes in Eastern Germany and the modern infrastructural ideal. International Journal of Urban and Regional Research, 32(2), 436–451.

    Article  Google Scholar 

  • Münchner Stadtentwässerung (Munich Urban Drainage Unit). (2005). Regenwasser versickern—Gebühren sparen (Infiltrate rainwater—save costs) (pp. 48) (in German).

    Google Scholar 

  • Narain, S. (2002). The flush toilet is ecologically mindless. Down to Earth, 10(19).

    Google Scholar 

  • OECD. (2012). OECD Environmental Outlook 2050 (p. 353). Paris: OECD Publ.

    Book  Google Scholar 

  • Rees, W. (1992). Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environment and Urbanization, 4, 121.

    Article  Google Scholar 

  • Roberts, E., & Finnegan, L. (2013). Building Peace around water, land and food: Policy and practice for preventing conflict (p. 17). Quaker United Nations Office, Geneva: Switzerland.

    Google Scholar 

  • Schönfelder, W., Giese, T., Augustin, K., Bertram, N.-P., Kuck, W., Li, Z., et al. (2013). Energetische Optimierung des HAMBURG WATER Cycle® im Stadtquartier Jenfelder Au. Final Report. EnEff:Stadt Programme, Bundesministerium für Wirtschaft und Technologie (German Ministry for Economy and Technology), Berlin, Germany (pp. 293) (in German).

    Google Scholar 

  • Sedlak, D. L. (2015). Water 4.0—a revolution. Talk given at Oskar von Miller Forum, Munich, Germany, on 10.12.15.

    Google Scholar 

  • Statistisches Bundesamt. (2015). Abwasser und Klärschlamm in Deutschland—statistische Betrachtungen. Teil 2. Korrespondenz Abwasser, 62(1), 46–53.

    Google Scholar 

  • StMUV (Bayerisches Staatsministerium für Umwelt und Verbraucherschutz (Bavarian State Ministry for Environment and Consumer Protection)). (2016). Bayerische Klima-Anpassungsstrategie (BayKLAS) (Bavarian Climate Adaptation Strategy) StMUV, Munich, Germany (pp. 222) (in German).

    Google Scholar 

  • StMWIVT (Bayerisches Staatsministerium für
Wirtschaft, Infrastruktur, Verkehr und Technologie (Bavarian State Ministry for Economy, Infrastructure, Transport and Technology) (2011). Bayerisches Energiekonzept „Energie innovativ“ (Bavarian energy concept). StMWIVT, Munich, Germany (pp. 84) (in German).

    Google Scholar 

  • SWM (Stadtwerke München (City of Munich Water and Energy Management Unit)). (2014). Energiespar- Tipps: Energie effizient einsetzen für eine saubere Umwelt (Energy saving tips: mobilizing energy efficiency for a clean environment). SWM, Munich, Germany (pp. 154) (in German).

    Google Scholar 

  • SWM (Stadtwerke München (City of Munich Water and Energy Management Unit)). (2015). M-Wasser: Erstklassiges Naturprodukt direkt von der Quelle (Munich water: first class product direct from the source). Retrieved July 15, 2015, from http://www.swm.de/dms/swm/dokumente/m-wasser/m-wasser-broschuere.pdf (in German).

  • SWM (Stadtwerke München (City of Munich Water and Energy Management Unit)) (2015–2). Retrieved September 18, 2015, from https://www.swm.de/privatkunden/mein-swm/tarifberatung#TarifberaterPlace:&kundengruppe=PK&layout=L&nebenzeit=0&plz=80803&sparte=STROM&verbrauch=2500&zaehler=ET (in German).

  • SZ (Süddeutsche Zeitung (South German Newspaper)). (2014). Risse im Kanal: Die 100 Jahre alte Münchner Abwasserkonstruktion muss aufwendig saniert warden (Holes in the canal: the 100 year old Munich sewage system needs expensive renovation). 03.01.2014. SZ Publishers, Munich, Germany (in German).

    Google Scholar 

  • The Climate Group. (2007). In The Black: The growth of the low carbon economy (pp. 23). London, UK: The °Climate Group.

    Google Scholar 

  • Uchatius, W. (2011). Kapitalismus in der Reichtumsfalle. Süddeutsche Zeitung, 10, 23–24 (in German).

    Google Scholar 

  • Water, U. N. (2010). Climate change adaptation: the pivotal role of water (p. 18). Germany: Policy brief, Bonn.

    Google Scholar 

  • UNEP. (2014). The business case for eco-innovation (pp. 52). United Nations Environment Programme (UNEP).

    Google Scholar 

  • Vörösmarty, C. J., Green, P., & Lammers, R. P. (2000). Global water resources: Vulnerability from climate change and population growth. Science, 289, 284–288.

    Article  Google Scholar 

  • Wilderer, P. A. (2004). Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs. Water Science and Technology, 49(7), 7–16.

    Google Scholar 

  • Wilderer, P. A., Grambow, M., Brenner, A., & Bauer, W. P. (2016). Sanitary engineering: Central or decentral solutions? In P.A. Wilderer & M. Grambow (Eds.), Global stability through decentralization? In search for the right balance between central and decentral solutions (pp. 200).

    Google Scholar 

  • WBCSD. (2014). Co-optimizing solutions: water and energy for food, feed and fibre (pp. 237). World Business Council for Sustainable Development (WBCSD).

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme (PIRG06-GA-2009-256555), the German Research Foundation (DFG) (KE 1710/1-1), and the Bavarian State Ministry of the Environment and Consumer Protection, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Gondhalekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gondhalekar, D., Drewes, J.E., Grambow, M. (2018). Risk and Water Management Under Climate Change: Towards the Nexus City. In: Wilderer, P., Renn, O., Grambow, M., Molls, M., Mainzer, K. (eds) Sustainable Risk Management. Strategies for Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-66233-6_7

Download citation

Publish with us

Policies and ethics