Skip to main content

Leveraging Coupled Agent-Based Models to Explore the Resilience of Tightly-Coupled Land Use Systems

  • Conference paper
  • First Online:
Agent-Based Models and Complexity Science in the Age of Geospatial Big Data

Abstract

This chapter argues that agent-based models (ABMs) possess an inherent advantage for modeling and exploring the general and specified resilience of social-ecological systems. Coupled systems are often complex adaptive systems, and the ability of ABMs to integrate heterogeneous actors, dynamic couplings, and processes across spatiotemporal scales is vital to understanding resilience in the context of complexity theory. To that end, we present the results of a preliminary stylized model designed to explore resilience concepts in an agricultural land use system. We then identify strengths and opportunities for further ABM development, and outline future work to integrate empirically-parameterized agent behavioral rules with robust biophysical models to explore resilience and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An L, Zvoleff A, Liu J, Axinn W (2014) Agent-based modeling in coupled human and natural systems (CHANS): lessons from a comparative analysis. Ann Assoc Am Geogr 104:723–745

    Article  Google Scholar 

  2. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422

    Article  Google Scholar 

  3. Liu J, Dietz T, Carpenter SR, Folke C, Alberti M, Redman CL, Schneider SH, Ostrom E, Pell AN, Lubchenco J, Taylor WW, Ouyang Z, Deadman P, Kratz T, Folke C, Provencher W (2007) Coupled human and natural systems. Ambio 36:639–649

    Article  Google Scholar 

  4. Binder CR, Hinkel J, Bots PWG, Pahl-Wostl C (2013) Comparison of frameworks for analyzing social-ecological systems. Ecol Soc 18:26

    Article  Google Scholar 

  5. Grimm V, Schmidt E, Wissel C (1992) On the application of stability concepts in ecology. Ecol Model 63:143–161

    Article  Google Scholar 

  6. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  Google Scholar 

  7. Cutter SL, Finch C (2008) Temporal and spatial changes in social vulnerability to natural hazards. Proc National Acad Sci USA 105:2301–2306

    Article  Google Scholar 

  8. Cutter SL, Burton CG, Emrich CT (2010) Disaster resilience indicators for benchmarking baseline conditions. J Homeland Secur Emerg Manag 7:1–24

    Google Scholar 

  9. Lam NS-N, Qiang Y, Arenas H, Brito P, Liu K-B (2015) Mapping and assessing coastal resilience in the Caribbean region. Cartogr Geogr Inf Sci 42:315–322

    Article  Google Scholar 

  10. Adger WN, Vincent K (2005) Uncertainty in adaptive capacity. Compt Rendus Geosci 337:399–410

    Article  Google Scholar 

  11. Anderies JM, Folke C, Walker B, Ostrom E (2013) Aligning key concepts for global change policy: robustness, resilience, and sustainability. Ecol Soc 18:8

    Article  Google Scholar 

  12. Zhou H, Wang J, Wan J, Jia H (2010) Resilience to natural hazards: a geographic perspective. Nat Hazards 53:21–41

    Article  Google Scholar 

  13. Morecroft MD, Crick HQP, Duffield SJ, Macgregor NA (2012) Resilience to climate change: translating principles into practice. J Appl Ecol 49:547–551

    Article  Google Scholar 

  14. Baggio JA, Baggio JA, Brown K, Brown K, Hellebrandt D, Hellebrandt D (2015) Boundary object or bridging concept? A citation network analysis of resilience. Ecol Soc 20:2

    Article  Google Scholar 

  15. Davidson JL, Jacobson C, Lyth A, Dedekorkut-Howes A, Baldwin CL, Ellison JC, Holbrook NJ, Howes MJ, Serrao-Neumann S, Singh-Peterson L, Smith TF (2016) Interrogating resilience: toward a typology to improve its operationalization. Ecol Soc 21:27

    Article  Google Scholar 

  16. Quinlan AE, Berbés-Blázquez M, Haider LJ, Peterson GD (2015) Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. J Appl Ecol 53:677–687

    Article  Google Scholar 

  17. Schouten MAH, van der Heide CM, Heijman WJM, Opdam PFM (2012) A resilience-based policy evaluation framework: application to European rural development policies. Ecol Econ 81:165–175

    Article  Google Scholar 

  18. Walker B, Carpenter S, Holling CS, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9:5

    Article  Google Scholar 

  19. Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390–405

    Article  Google Scholar 

  20. Carpenter S, Walker B, Anderies JM, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4:765–781

    Article  Google Scholar 

  21. Folke C (2016) Resilience (republished). Ecol Soc 21:44

    Article  Google Scholar 

  22. Engle NL (2011) Adaptive capacity and its assessment. Glob Environ Chang 21:647–656

    Article  Google Scholar 

  23. Walker B, Salt D (2006) Resilience thinking: sustaining ecosystems and people in a changing world. Island Press, Washington, D.C

    Google Scholar 

  24. Allison HE, Hobbs RJ (2004) Resilience, adaptive capacity, and the lock-in trap of the western Australian agricultural region. Ecol Soc 9:3

    Article  Google Scholar 

  25. Carpenter SR, Brock WA (2008) Adaptive capacity and traps. Ecol Soc 13:40

    Article  Google Scholar 

  26. Gunderson LH, Carpenter S, Folke C, Olsson P, Peterson G (2006) Water RATs (resilience, adaptability, and transformability) in lake and wetland social-ecological systems. Ecol Soc 11:16

    Article  Google Scholar 

  27. Folke C (2006) Resilience: the emergence of a perspective for social–ecological systems analyses. Glob Environ Chang 16:253–267

    Article  Google Scholar 

  28. Holland JH (1992) Complex adaptive systems. Daedalus 121:17–30

    Google Scholar 

  29. Cumming GS (2011) Spatial resilience in social-ecological systems. Springer, London

    Book  Google Scholar 

  30. Janssen MA, Bodin Ö, Anderies JM, Elmqvist T, Ernstson H, Mcallister RRJ, Olsson P, Ryan P (2006) Toward a network perspective of the study of resilience in social-ecological systems. Ecol Soc 11:15

    Article  Google Scholar 

  31. Mitchell M (2009) Complexity a guided tour. Oxford University Press, New York

    Google Scholar 

  32. Malanson GP (1999) Considering complexity. Ann Assoc Am Geogr 89:746–753

    Article  Google Scholar 

  33. Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J, Ostrom E, Ouyang Z, Provencher W, Redman CL, Schneider SH, Taylor WW (2007) Complexity of coupled human and natural systems. Science 317:1513–1516

    Article  Google Scholar 

  34. Bennett D, McGinnis D (2008) Coupled and complex: human–environment interaction in the greater yellowstone ecosystem, USA. Geoforum 39:833–845

    Article  Google Scholar 

  35. Parker DC, Manson SM, Janssen MA, Deadman P, Hoffmann MJ (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337

    Article  Google Scholar 

  36. Tang W, Bennett DA (2010) The explicit representation of context in agent-based models of complex adaptive spatial systems. Ann Assoc Am Geogr 100:1128–1155

    Article  Google Scholar 

  37. Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19:37–41

    Article  Google Scholar 

  38. Parker DC, Hessl A, Davis SC (2008) Complexity, land-use modeling, and the human dimension: fundamental challenges for mapping unknown outcome spaces. Geoforum 39:789–804

    Article  Google Scholar 

  39. Guzy MR, Smith CL, Bolte JP, Hulse DW, Gregory SV (2008) Policy research using agent-based modeling to assess future impacts of urban expansion into farmlands and forests. Ecol Soc 13:37

    Article  Google Scholar 

  40. Schouten M, Opdam P, Polman N, Westerhof E (2013) Resilience-based governance in rural landscapes: experiments with agri-environment schemes using a spatially explicit agent-based model. Land Use Policy 30:934–943

    Article  Google Scholar 

  41. Mallya G, Zhao L, Song XC, Niyogi D, Govindaraju RS (2013) 2012 midwest drought in the United States. J Hydrol Eng 18:737–745

    Article  Google Scholar 

  42. Schilling K, Streeter M, Hutchinson K, Wilson C, Abban B, Wacha K, Papanicolaou A (2015) Effects of land cover on streamflow variability in a small iowa watershed: assessing future vulnerabilities. Am J Environ Sci 11:186–198

    Article  Google Scholar 

  43. Papanicolaou AN, Wacha KM, Abban BK, Wilson CG, Hatfield JL, Stanier CO, Filley TR (2015) From soilscapes to landscapes: a landscape-oriented approach to simulate soil organic carbon dynamics in intensively managed landscapes. J Geophys Res Biogeosci 120(11):2375–2401

    Article  Google Scholar 

  44. Ding D, Bennett D, Secchi S (2015) Investigating impacts of alternative crop market scenarios on land use change with an agent-based model. Landscape 4:1110–1137

    Google Scholar 

  45. Budyko MI (1958) The heat balance of the Earth’s surface. Office of Technical Service, U.S. Department of Commerce, Washington D. C

    Google Scholar 

  46. Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46(1):30–33

    Google Scholar 

  47. R Core Team: R, https://R-project.org

  48. Bitterman P, Bennett DA (2016) Constructing stability landscapes to identify alternative states in coupled social-ecological agent-based models. Ecol Soc 21:21

    Article  Google Scholar 

  49. AGWEB: Cash Grain Bids, https://www.agweb.com/markets/cash-grain-bids

  50. Iowa State University (2016) Extension and outreach: estimated costs of crop production in Iowa–2016

    Google Scholar 

  51. Bakhsh A, Jaynes DB, Colvin TS, Kanwar RS (2000) Spatio-temporal analysis of yield variability for a corn-soybean field in Iowa. Trans ASAE 43:31–38

    Article  Google Scholar 

  52. Pielou EC (1975) Ecological diversity. Wiley-Interscience, New York

    Google Scholar 

  53. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  54. Elmqvist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  55. Allen CR, Angeler DG, Cumming GS, Folke C, Twidwell D, Uden DR (2016) Quantifying spatial resilience. J Appl Ecol 53:625–635

    Article  Google Scholar 

  56. Brooks N, Neil Adger W, Mick Kelly P, Kelly PM (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob Environ Chang 15:151–163

    Article  Google Scholar 

  57. Nelson DR, Adger WN, Brown K (2007) Adaptation to environmental change: contributions of a resilience framework. Annu Rev. Environ Resour 32:395–419

    Article  Google Scholar 

  58. Bennett DA, Tang W, Wang S (2011) Toward an understanding of provenance in complex land use dynamics. J Land Use Sci 6:211–230

    Article  Google Scholar 

  59. Moser SC, Ekstrom JA (2010) A framework to diagnose barriers to climate change adaptation. PNAS 107:22026–22031

    Article  Google Scholar 

  60. Grothmann T, Patt A (2005) Adaptive capacity and human cognition: the process of individual adaptation to climate change. Glob Environ Chang 15:199–213

    Article  Google Scholar 

  61. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176:313–332

    Article  Google Scholar 

  62. Magliocca NR, Brown DG, Ellis EC (2013) Exploring agricultural livelihood transitions with an agent-based virtual laboratory: global forces to local decision-making. PLoS One 8:e73241

    Article  Google Scholar 

  63. Magliocca NR, Brown DG, Ellis EC (2014) Cross-site comparison of land-use decision-making and its consequences across land systems with a generalized agent-based model. PLoS One 9:e86179

    Article  Google Scholar 

  64. Bone C, Dragićević S (2010) Simulation and validation of a reinforcement learning agent-based model for multi-stakeholder forest management. Comput Environ Urban Syst 34:162–174

    Article  Google Scholar 

  65. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59

    Article  Google Scholar 

  66. Andersen T, Carstensen J, Hernández-García E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24:49–57

    Article  Google Scholar 

  67. Van Meter KJ, Basu NB (2015) Catchment legacies and time lags: a parsimonious watershed model to predict the effects of legacy storage on nitrogen export. PLoS One 10:e0125971–e0125922

    Article  Google Scholar 

  68. Gray SA, Gray S, De Kok JL, Helfgott AER, O'Dwyer B, Jordan R, Nyaki A (2015) Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecol Soc 20:11

    Article  Google Scholar 

  69. Davoudi S, Shaw K, Haider LJ, Quinlan AE, Peterson GD, Wilkinson C, Fünfgeld H, McEvoy D, Porter L (2012) Resilience: a bridging concept or a dead end? “reframing” resilience: challenges for planning theory and practice interacting traps: resilience assessment of a pasture management system in northern afghanistan urban resilience: what does it mean in planning practice? Resilience as a useful concept for climate change adaptation? The politics of resilience for planning: a cautionary note. Plan Theory Pract 13:299–333

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded in part by NSF Coupled Natural Human Systems Award #1114978, People, Water, and Climate: Adaptation and Resilience in Agricultural Watersheds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Bitterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bitterman, P., Bennett, D.A. (2018). Leveraging Coupled Agent-Based Models to Explore the Resilience of Tightly-Coupled Land Use Systems. In: Perez, L., Kim, EK., Sengupta, R. (eds) Agent-Based Models and Complexity Science in the Age of Geospatial Big Data. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-65993-0_2

Download citation

Publish with us

Policies and ethics