Skip to main content

Physical Properties of Single Cells and Collective Behavior

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Cells display a high degree of functional organization, largely attributed to the intracellular biopolymer scaffold known as the cytoskeleton. This inherently complex structure drives the system out of equilibrium by constantly consuming energy to conserve or reorganize its structure. Thus, the active, structurally organized cytoskeleton is the key player for the emergent mechanical properties of cells, which further determine properties of cell clusters and even multicellular organisms. In this spirit, this chapter introduces the physical principles on the different levels of biological complexity ranging from single biopolymers to tissues. The emergent mechanical properties and their respective effects on each level will be highlighted with a strong emphasis on their intertwined nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson PW. More is different. Science. 1972;177(4047):393–6. https://doi.org/10.1126/science.177.4047.393.

    Article  CAS  PubMed  Google Scholar 

  2. Laughlin RB, Pines D. The theory of everything. Proc Natl Acad Sci U S A. 2000;97(1):28–31. https://doi.org/10.1073/pnas.97.1.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schrödinger E. What is life?: the physical aspect of the living cell, Canto. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  4. Ryan AJ. Emergence is coupled to scope, not level. Complexity. 2007;13(2):67–77. https://doi.org/10.1002/cplx.20203.

    Article  Google Scholar 

  5. Dawkins R The blind watchmaker: why the evidence of evolution reveals a universe without design. New edition [reissue] ed. New York: W. W. Norton; 1996.

    Google Scholar 

  6. Schuster P. A beginning of the end of the holism versus reductionism debate?: molecular biology goes cellular and organismic. Complexity. 2007;13(1):10–3. https://doi.org/10.1002/cplx.20193.

  7. Huber F, Schnauss J, Ronicke S, et al. Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv Phys. 2013;62(1):1–112. https://doi.org/10.1080/00018732.2013.771509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huber F, Kas J. Self-regulative organization of the cytoskeleton. Cytoskeleton. 2011;68(5):259–65. https://doi.org/10.1002/cm.20509.

    Article  CAS  PubMed  Google Scholar 

  9. Halley JD, Winkler DA. Classification of emergence and its relation to self-organization. Complexity. 2008;13(5):10–5. https://doi.org/10.1002/cplx.20216.

    Article  Google Scholar 

  10. Halley JD, Winkler DA. Consistent concepts of self-organization and self-assembly. Complexity. 2008;14(2):10–7. https://doi.org/10.1002/cplx.20235.

    Article  Google Scholar 

  11. Alberts B. Molecular biology of the cell: [MBOC]. 6th ed. New York: GS Garland Science; 2015.

    Google Scholar 

  12. Doi M, Edwards SF. The theory of polymer dynamics, The international series of monographs on physics, vol. 73. Oxford: Clarendon Press; 2003.

    Google Scholar 

  13. Schuldt C, Schnauß J, Händler T, et al. Tuning synthetic semiflexible networks by bending stiffness. Phys Rev Lett. 2016;117(19):197801. https://doi.org/10.1103/PhysRevLett.117.197801.

    Article  PubMed  CAS  Google Scholar 

  14. Isambert H, Venier P, Maggs A, et al. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem. 1995;270(19):11437–44. https://doi.org/10.1074/jbc.270.19.11437.

    Article  CAS  PubMed  Google Scholar 

  15. Isambert H, Maggs AC. Dynamics and rheology of actin solutions. Macromolecules. 1996;29(3):1036–40. https://doi.org/10.1021/ma946418x.

    Article  CAS  Google Scholar 

  16. Greenberg MJ, Wang C-LA, Lehman W, et al. Modulation of actin mechanics by caldesmon and tropomyosin. Cell Motil Cytoskeleton. 2008;65(2):156–64. https://doi.org/10.1002/cm.20251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janson ME, Dogterom M. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Biophys J. 2004;87(4):2723–36. https://doi.org/10.1529/biophysj.103.038877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yin P, Hariadi RF, Sahu S, et al. Programming DNA tube circumferences. Science. 2008;321(5890):824–6. https://doi.org/10.1126/science.1157312.

    Article  CAS  PubMed  Google Scholar 

  19. Schiffels D, Liedl T, Fygenson DK. Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano. 2013;7(8):6700–10. https://doi.org/10.1021/nn401362p.

    Article  CAS  PubMed  Google Scholar 

  20. Glaser M, Schnauß J, Tschirner T, et al. Self-assembly of hierarchically ordered structures in DNA nanotube systems. New J Phys. 2016;18(5):55001. https://doi.org/10.1088/1367-2630/18/5/055001.

    Article  CAS  Google Scholar 

  21. Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–76. https://doi.org/10.1146/annurev.biophys.29.1.545.

    Article  CAS  PubMed  Google Scholar 

  22. Schnauß J, Händler T, Käs J. Semiflexible biopolymers in bundled arrangements. Polymers. 2016;8(8):274. https://doi.org/10.3390/polym8080274.

    Article  CAS  Google Scholar 

  23. Schnauss J, Golde T, Schuldt C, et al. Transition from a linear to a harmonic potential in collective dynamics of a multifilament actin bundle. Phys Rev Lett. 2016;116(10):108102. https://doi.org/10.1103/PhysRevLett.116.108102.

    Article  PubMed  CAS  Google Scholar 

  24. Lansky Z, Braun M, Ludecke A, et al. Diffusible crosslinkers generate directed forces in microtubule networks. Cell. 2015;160(6):1159–68. https://doi.org/10.1016/j.cell.2015.01.051.

    Article  CAS  PubMed  Google Scholar 

  25. Braun M, Lansky Z, Hilitski F, et al. Entropic forces drive contraction of cytoskeletal networks. BioEssays. 2016;38(5):474–81. https://doi.org/10.1002/bies.201500183.

    Article  PubMed  Google Scholar 

  26. Ward A, Hilitski F, Schwenger W, et al. Solid friction between soft filaments. Nat Mater. 2015;14(6):583–8. https://doi.org/10.1038/nmat4222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hilitski F, Ward AR, Cajamarca L, et al. Measuring cohesion between macromolecular filaments one pair at a time: depletion-induced microtubule bundling. Phys Rev Lett. 2015;114(13):138102. https://doi.org/10.1103/PhysRevLett.114.138102.

    Article  PubMed  CAS  Google Scholar 

  28. Huber F, Strehle D, Schnauß J, et al. Formation of regularly spaced networks as a general feature of actin bundle condensation by entropic forces. New J Phys. 2015;17(4):43029. https://doi.org/10.1088/1367-2630/17/4/043029.

    Article  CAS  Google Scholar 

  29. Daniel JL, Molish IR, Robkin L, et al. Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets. Eur J Biochem. 1986;156(3):677–83. https://doi.org/10.1111/j.1432-1033.1986.tb09631.x.

    Article  CAS  PubMed  Google Scholar 

  30. Bernstein BW, Bamburg JR. Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci. 2003;23(1):1–6.

    CAS  PubMed  Google Scholar 

  31. Block J, Schroeder V, Pawelzyk P, et al. Physical properties of cytoplasmic intermediate filaments. Biochim Biophys Acta. 2015;1853(11 Pt B):3053–64. https://doi.org/10.1016/j.bbamcr.2015.05.009.

    Article  CAS  PubMed  Google Scholar 

  32. Herrmann H, Bar H, Kreplak L, et al. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. 2007;8(7):562–73. https://doi.org/10.1038/nrm2197.

    Article  CAS  PubMed  Google Scholar 

  33. Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem. 2004;73:749–89. https://doi.org/10.1146/annurev.biochem.73.011303.073823.

    Article  CAS  PubMed  Google Scholar 

  34. Howard J, Hyman AA. Dynamics and mechanics of the microtubule plus end. Nature. 2003;422(6933):753–8. https://doi.org/10.1038/nature01600.

    Article  CAS  PubMed  Google Scholar 

  35. Vavylonis D, Yang Q, O’Shaughnessy B. Actin polymerization kinetics, cap structure, and fluctuations. Proc Natl Acad Sci U S A. 2005;102(24):8543–8. https://doi.org/10.1073/pnas.0501435102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Footer MJ, Kerssemakers JWJ, Theriot JA, et al. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc Natl Acad Sci U S A. 2007;104(7):2181–6. https://doi.org/10.1073/pnas.0607052104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Howard J. Mechanics of motor proteins and the cytoskeleton. Sunderland: Sinauer Associates; 2006.

    Google Scholar 

  38. Lockot HW, Uhlig S. Bibliographia aethiopica, Aethiopistische forschungen, vol. 41. Wiesbaden: Steiner; 1998.

    Google Scholar 

  39. Bell A, Macfarquhar C. Encyclopaedia britannica: or, a dictionary of arts and sciences, three volumes. Scotland: Edinburgh; 1771.

    Google Scholar 

  40. Borel F, Taylor JB, Paris IM. The splendor of ethnic jewelry: from the Colette and Jean-Pierre Ghysels collection, Pbk. ed. New York: H. N. Abrams; 2001

    Google Scholar 

  41. Mahaffy RE, Shih CK, MacKintosh FC, et al. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett. 2000;85(4):880–3. https://doi.org/10.1103/PhysRevLett.85.880.

    Article  CAS  PubMed  Google Scholar 

  42. Chen EJ, Novakofski J, Jenkins WK, et al. Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans Ultrason Ferroelect Freq Contr. 1996;43(1):191–4. https://doi.org/10.1109/58.484478.

    Article  Google Scholar 

  43. Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102. https://doi.org/10.1016/S1350-4533(98)00007-1.

    Article  CAS  PubMed  Google Scholar 

  44. Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26(2):111–9. https://doi.org/10.1016/0021-9290(93)90042-D.

    Article  CAS  PubMed  Google Scholar 

  45. Akhtar R, Sherratt MJ, Cruickshank JK, et al. Characterizing the elastic properties of tissues. Mater Today. 2011;14(3):96–105. https://doi.org/10.1016/S1369-7021(11)70059-1.

    Article  CAS  Google Scholar 

  46. Yanniotis S, Skaltsi S, Karaburnioti S. Effect of moisture content on the viscosity of honey at different temperatures. J Food Eng. 2006;72(4):372–7. https://doi.org/10.1016/j.jfoodeng.2004.12.017.

    Article  Google Scholar 

  47. Kesmarky G, Kenyeres P, Rabai M, et al. Plasma viscosity: a forgotten variable. Clin Hemorheol Microcirc. 2008;39(1-4):243–6.

    PubMed  Google Scholar 

  48. Zhou EH, Martinez FD, Fredberg JJ. Cell rheology: mush rather than machine. Nat Mater. 2013;12(3):184. https://doi.org/10.1038/nmat3574.

    Article  CAS  PubMed  Google Scholar 

  49. Spence AJ. Scaling in biology. Curr Biol. 2009;19(2):R57–61. https://doi.org/10.1016/j.cub.2008.10.042.

    Article  CAS  PubMed  Google Scholar 

  50. Brown JH, West GB, editors. Scaling in biology. Santa Fe Institute studies in the sciences of complexity. Oxford: Oxford University Press; 2000.

    Google Scholar 

  51. West GB. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6. https://doi.org/10.1126/science.276.5309.122.

    Article  CAS  PubMed  Google Scholar 

  52. Kollmannsberger P, Fabry B. Linear and nonlinear rheology of living cells. Annu Rev Mater Res. 2011;41(1):75–97. https://doi.org/10.1146/annurev-matsci-062910-100351.

    Article  CAS  Google Scholar 

  53. Sandersius SA, Newman TJ. Modeling cell rheology with the subcellular element model. Phys Biol. 2008;5(1):15002. https://doi.org/10.1088/1478-3975/5/1/015002.

    Article  CAS  Google Scholar 

  54. Fabry B, Maksym GN, Butler JP, et al. Scaling the microrheology of living cells. Phys Rev Lett. 2001;87(14):148102. https://doi.org/10.1103/PhysRevLett.87.148102.

    Article  CAS  PubMed  Google Scholar 

  55. Chen DT, Wen Q, Janmey PA, et al. Rheology of Soft materials. Annu Rev Condens Matter Phys. 2010;1(1):301–22. https://doi.org/10.1146/annurev-conmatphys-070909-104120.

    Article  CAS  Google Scholar 

  56. Kroy K. Dynamics of wormlike and glassy wormlike chains. Soft Matter. 2008;4(12):2323. https://doi.org/10.1039/B807018K.

    Article  CAS  Google Scholar 

  57. Kroy K, Glaser J. The glassy wormlike chain. New J Phys. 2007;9(11):416. https://doi.org/10.1088/1367-2630/9/11/416.

    Article  Google Scholar 

  58. Wolff L, Fernandez P, Kroy K. Resolving the stiffening-softening paradox in cell mechanics. PLoS One. 2012;7(7):e40063. https://doi.org/10.1371/journal.pone.0040063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez ML, McGarry PJ, Sniadecki NJ. Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev. 2013;65(6):60801. https://doi.org/10.1115/1.4025355.

    Article  Google Scholar 

  60. Lim CT, Zhou EH, Quek ST. Mechanical models for living cells—a review. J Biomech. 2006;39(2):195–216. https://doi.org/10.1016/j.jbiomech.2004.12.008.

    Article  CAS  PubMed  Google Scholar 

  61. Herant M, Marganski WA, Dembo M. The mechanics of neutrophils: synthetic modeling of three experiments. Biophys J. 2003;84(5):3389–413. https://doi.org/10.1016/S0006-3495(03)70062-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dai J, Ting-Beall HP, Hochmuth RM, et al. Myosin I contributes to the generation of resting cortical tension. Biophys J. 1999;77(2):1168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peskin CS, Odell GM, Oster GF. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J. 1993;65(1):316–24. https://doi.org/10.1016/S0006-3495(93)81035-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mogilner A, Oster G. Cell motility driven by actin polymerization. Biophys J. 1996;71(6):3030–45. https://doi.org/10.1016/S0006-3495(96)79496-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuusela E, Alt W. Continuum model of cell adhesion and migration. J Math Biol. 2009;58(1-2):135–61. https://doi.org/10.1007/s00285-008-0179-x.

    Article  PubMed  Google Scholar 

  66. Zimmerle CT, Frieden C. Effect of temperature on the mechanism of actin polymerization. Biochemistry. 1986;25(21):6432–8.

    Article  CAS  PubMed  Google Scholar 

  67. Kis A, Kasas S, Kulik AJ, et al. Temperature-dependent elasticity of microtubules. Langmuir. 2008;24(12):6176–81. https://doi.org/10.1021/la800438q.

    Article  CAS  PubMed  Google Scholar 

  68. Yengo CM, Takagi Y, Sellers JR. Temperature dependent measurements reveal similarities between muscle and non-muscle myosin motility. J Muscle Res Cell Motil. 2012;33(6):385–94. https://doi.org/10.1007/s10974-012-9316-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oroian M, Amariei S, Escriche I, et al. A viscoelastic model for honeys using the time–temperature superposition principle (TTSP). Food Bioprocess Technol. 2013;6(9):2251–60. https://doi.org/10.1007/s11947-012-0893-7.

    Article  Google Scholar 

  70. Kießling TR, Stange R, Käs JA, et al. Thermorheology of living cells—impact of temperature variations on cell mechanics. New J Phys. 2013;15(4):45026. https://doi.org/10.1088/1367-2630/15/4/045026.

    Article  Google Scholar 

  71. Schmidt BUS, Kießling TR, Warmt E, et al. Complex thermorheology of living cells. New J Phys. 2015;17(7):73010. https://doi.org/10.1088/1367-2630/17/7/073010.

    Article  Google Scholar 

  72. Joanny J, Prost J. Active gels as a description of the actin-myosin cytoskeleton. HFSP J. 2009;3(2):94–104. https://doi.org/10.2976/1.3054712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Joanny J-F, Ramaswamy S. A drop of active matter. J Fluid Mech. 2012;705:46–57. https://doi.org/10.1017/jfm.2012.131.

    Article  Google Scholar 

  74. Pearson JE. Complex patterns in a simple system. Science. 1993;261(5118):189–92. https://doi.org/10.1126/science.261.5118.189.

    Article  CAS  PubMed  Google Scholar 

  75. Strehle D, Schnauss J, Heussinger C, et al. Transiently crosslinked F-actin bundles. Eur Biophys J. 2011;40(1):93–101. https://doi.org/10.1007/s00249-010-0621-z.

    Article  CAS  PubMed  Google Scholar 

  76. Goldman RD, Khuon S, Chou YH, et al. The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol. 1996;134(4):971–83.

    Article  CAS  PubMed  Google Scholar 

  77. Pourati J, Maniotis A, Spiegel D, et al. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Physiol. 1998;274(5 Pt 1):C1283–9.

    Article  CAS  PubMed  Google Scholar 

  78. Wang N, Im T-N, Chen J, et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol. 2002;282(3):C606–16. https://doi.org/10.1152/ajpcell.00269.2001.

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez P, Pullarkat PA, Ott A. A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J. 2006;90(10):3796–805. https://doi.org/10.1529/biophysj.105.072215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trepat X, Deng L, An SS, et al. Universal physical responses to stretch in the living cell. Nature. 2007;447(7144):592–5. https://doi.org/10.1038/nature05824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Krishnan R, Park CY, Lin YC, et al. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS One. 2009;4(5):e5486. https://doi.org/10.1371/journal.pone.0005486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wolf K, Te Lindert M, Krause M, et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol. 2013;201(7):1069–84. https://doi.org/10.1083/jcb.201210152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lange JR, Steinwachs J, Kolb T, et al. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J. 2015;109(1):26–34. https://doi.org/10.1016/j.bpj.2015.05.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Friedl P, Wolf K, Lammerding J. Nuclear mechanics during cell migration. Curr Opin Cell Biol. 2011;23(1):55–64. https://doi.org/10.1016/j.ceb.2010.10.015.

    Article  CAS  PubMed  Google Scholar 

  85. Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction. Circ Res. 2008;102(11):1307–18. https://doi.org/10.1161/CIRCRESAHA.108.173989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Swift J, Discher DE. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J Cell Sci. 2014;127(Pt 14):3005–15. https://doi.org/10.1242/jcs.149203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harada T, Swift J, Irianto J, et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol. 2014;204(5):669–82. https://doi.org/10.1083/jcb.201308029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Händel C, Schmidt BUS, Schiller J, et al. Cell membrane softening in human breast and cervical cancer cells. New J Phys. 2015;17(8):83008. https://doi.org/10.1088/1367-2630/17/8/083008.

    Article  CAS  Google Scholar 

  89. Braig S, Schmidt BUS, Stoiber K, et al. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion. New J Phys. 2015;17(8):83007. https://doi.org/10.1088/1367-2630/17/8/083007.

    Article  CAS  Google Scholar 

  90. Gracià RS, Bezlyepkina N, Knorr RL, et al. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter. 2010;6(7):1472. https://doi.org/10.1039/b920629a.

    Article  CAS  Google Scholar 

  91. Lu Y-B, Franze K, Seifert G, et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci U S A. 2006;103(47):17759–64. https://doi.org/10.1073/pnas.0606150103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Radmacher M, Fritz M, Kacher CM, et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996;70(1):556–67. https://doi.org/10.1016/S0006-3495(96)79602-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Radmacher M. Studying the mechanics of cellular processes by atomic force microscopy. In:Cell mechanics, vol. 83. London: Elsevier; 2007. p. 347–72.

    Chapter  Google Scholar 

  94. Janmey PA, Winer JP, Murray ME, et al. The hard life of soft cells. Cell Motil Cytoskeleton. 2009;66(8):597–605. https://doi.org/10.1002/cm.20382.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mierke CT, Rosel D, Fabry B, et al. Contractile forces in tumor cell migration. Eur J Cell Biol. 2008;87(8-9):669–76. https://doi.org/10.1016/j.ejcb.2008.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  97. Fritsch A, Höckel M, Kiessling T, et al. Are biomechanical changes necessary for tumour progression? Nat Phys. 2010;6(10):730–2. https://doi.org/10.1038/nphys1800.

    Article  CAS  Google Scholar 

  98. Thery M, Bornens M. Cell shape and cell division. Curr Opin Cell Biol. 2006;18(6):648–57. https://doi.org/10.1016/j.ceb.2006.10.001.

    Article  CAS  PubMed  Google Scholar 

  99. Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60(1):24–34. https://doi.org/10.1002/cm.20041.

    Article  PubMed  Google Scholar 

  100. Thoumine O, Cardoso O, Meister J-J. Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur Biophys J. 1999;28(3):222–34. https://doi.org/10.1007/s002490050203.

    Article  CAS  PubMed  Google Scholar 

  101. Wottawah F, Schinkinger S, Lincoln B, et al. Optical rheology of biological cells. Phys Rev Lett. 2005;94(9):98103. https://doi.org/10.1103/PhysRevLett.94.098103.

    Article  CAS  Google Scholar 

  102. Schmid-Schönbein GW, Sung KL, Tözeren H, et al. Passive mechanical properties of human leukocytes. Biophys J. 1981;36(1):243–56. https://doi.org/10.1016/S0006-3495(81)84726-1.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Thoumine O, Ott A. Comparison of the mechanical properties of normal and transformed fibroblasts. Biorheology. 1997;34(4-5):309–26. https://doi.org/10.1016/S0006-355X(98)00007-9.

    Article  CAS  PubMed  Google Scholar 

  104. Mahaffy RE, Park S, Gerde E, et al. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J. 2004;86(3):1777–93. https://doi.org/10.1016/S0006-3495(04)74245-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alcaraz J, Buscemi L, Grabulosa M, et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J. 2003;84(3):2071–9. https://doi.org/10.1016/S0006-3495(03)75014-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mizuno D, Bacabac R, Tardin C, et al. High-resolution probing of cellular force transmission. Phys Rev Lett. 2009;102(16):168102. https://doi.org/10.1103/PhysRevLett.102.168102.

    Article  PubMed  CAS  Google Scholar 

  107. Hoffman BD, Massiera G, van Citters KM, et al. The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci U S A. 2006;103(27):10259–64. https://doi.org/10.1073/pnas.0510348103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamada S, Wirtz D, Kuo SC. Mechanics of living cells measured by laser tracking microrheology. Biophys J. 2000;78(4):1736–47. https://doi.org/10.1016/S0006-3495(00)76725-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crocker JC, Valentine MT, Weeks ER, et al. Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett. 2000;85(4):888–91. https://doi.org/10.1103/PhysRevLett.85.888.

    Article  CAS  PubMed  Google Scholar 

  110. Fabry B, Maksym GN, Butler JP, et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;68(4 Pt 1):41914. https://doi.org/10.1103/PhysRevE.68.041914.

    Article  CAS  Google Scholar 

  111. Guck J, Ananthakrishnan R, Moon TJ, et al. Optical deformability of soft biological dielectrics. Phys Rev Lett. 2000;84(23):5451–4. https://doi.org/10.1103/PhysRevLett.84.5451.

    Article  CAS  PubMed  Google Scholar 

  112. Guck J, Ananthakrishnan R, Mahmood H, et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J. 2001;81(2):767–84. https://doi.org/10.1016/S0006-3495(01)75740-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brunner C, Niendorf A, Käs JA. Passive and active single-cell biomechanics: a new perspective in cancer diagnosis. Soft Matter. 2009;5(11):2171. https://doi.org/10.1039/b807545j.

    Article  CAS  Google Scholar 

  114. Mietke A, Otto O, Girardo S, et al. Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys J. 2015;109(10):2023–36. https://doi.org/10.1016/j.bpj.2015.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Otto O, Rosendahl P, Mietke A, et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods. 2015;12(3):199–202. https://doi.org/10.1038/nmeth.3281.

    Article  CAS  PubMed  Google Scholar 

  116. Gossett DR, Tse HTK, Lee SA, et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A. 2012;109(20):7630–5. https://doi.org/10.1073/pnas.1200107109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Evans EA. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J. 1983;43(1):27–30. https://doi.org/10.1016/S0006-3495(83)84319-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schulze C, Muller K, Kas JA, et al. Compaction of cell shape occurs before decrease of elasticity in CHO-K1 cells treated with actin cytoskeleton disrupting drug cytochalasin D. Cell Motil Cytoskeleton. 2009;66(4):193–201. https://doi.org/10.1002/cm.20341.

    Article  CAS  PubMed  Google Scholar 

  119. Jonas O, Duschl C. Force propagation and force generation in cells. Cytoskeleton. 2010;67(9):555–63. https://doi.org/10.1002/cm.20466.

    Article  PubMed  Google Scholar 

  120. Fuhs T, Reuter L, Vonderhaid I, et al. Inherently slow and weak forward forces of neuronal growth cones measured by a drift-stabilized atomic force microscope. Cytoskeleton. 2013;70(1):44–53. https://doi.org/10.1002/cm.21080.

    Article  CAS  PubMed  Google Scholar 

  121. Thoumine O, Ott A, Cardoso O, et al. Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J Biochem Biophys Methods. 1999;39(1-2):47–62. https://doi.org/10.1016/S0165-022X(98)00052-9.

    Article  CAS  PubMed  Google Scholar 

  122. Fernandez P, Ott A. Single cell mechanics: stress stiffening and kinematic hardening. Phys Rev Lett. 2008;100(23):238102. https://doi.org/10.1103/PhysRevLett.100.238102.

    Article  PubMed  CAS  Google Scholar 

  123. Benoit M, Gabriel D, Gerisch G, et al. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol. 2000;2(6):313–7. https://doi.org/10.1038/35014000.

    Article  CAS  PubMed  Google Scholar 

  124. Hoffman BD, Crocker JC. Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng. 2009;11:259–88. https://doi.org/10.1146/annurev.bioeng.10.061807.160511.

    Article  CAS  PubMed  Google Scholar 

  125. Golde T, Schuldt C, Schnauss J, et al. Fluorescent beads disintegrate actin networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2013;88(4):44601. https://doi.org/10.1103/PhysRevE.88.044601.

    Article  CAS  Google Scholar 

  126. Levine L. One- and two-particle microrheology. Phys Rev Lett. 2000;85(8):1774–7. https://doi.org/10.1103/PhysRevLett.85.1774.

    Article  CAS  PubMed  Google Scholar 

  127. Lau AWC, Hoffman BD, Davies A, et al. Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett. 2003;91(19):198101. https://doi.org/10.1103/PhysRevLett.91.198101.

    Article  CAS  PubMed  Google Scholar 

  128. Mijailovich SM, Kojic M, Zivkovic M, et al. A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol. 2002;93(4):1429–36. https://doi.org/10.1152/japplphysiol.00255.2002.

    Article  PubMed  Google Scholar 

  129. Massiera G, van Citters KM, Biancaniello PL, et al. Mechanics of single cells: rheology, time dependence, and fluctuations. Biophys J. 2007;93(10):3703–13. https://doi.org/10.1529/biophysj.107.111641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kreysing MK, Kießling T, Fritsch A, et al. The optical cell rotator. Opt Express. 2008;16(21):16984. https://doi.org/10.1364/OE.16.016984.

    Article  CAS  PubMed  Google Scholar 

  131. Gyger M, Stange R, Kiessling TR, et al. Active contractions in single suspended epithelial cells. Eur Biophys J. 2014;43(1):11–23. https://doi.org/10.1007/s00249-013-0935-8.

    Article  CAS  PubMed  Google Scholar 

  132. Maloney JM, Lehnhardt E, Long AF, et al. Mechanical fluidity of fully suspended biological cells. Biophys J. 2013;105(8):1767–77. https://doi.org/10.1016/j.bpj.2013.08.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maloney JM, van Vliet KJ. Chemoenvironmental modulators of fluidity in the suspended biological cell. Soft Matter. 2014;10(40):8031–42. https://doi.org/10.1039/C4SM00743C.

    Article  CAS  PubMed  Google Scholar 

  134. van Vliet K, Bao G, Suresh S. The biomechanics toolbox: Experimental approaches for living cells and biomolecules. Acta Mater. 2003;51(19):5881–905. https://doi.org/10.1016/j.actamat.2003.09.001.

    Article  CAS  Google Scholar 

  135. Pullarkat P, Fernandez P, Ott A. Rheological properties of the eukaryotic cell cytoskeleton. Phys Rep. 2007;449(1-3):29–53. https://doi.org/10.1016/j.physrep.2007.03.002.

    Article  CAS  Google Scholar 

  136. Fernández P, Heymann L, Ott A, et al. Shear rheology of a cell monolayer. New J Phys. 2007;9(11):419. https://doi.org/10.1088/1367-2630/9/11/419.

    Article  CAS  Google Scholar 

  137. Deng L, Trepat X, Butler JP, et al. Fast and slow dynamics of the cytoskeleton. Nat Mater. 2006;5(8):636–40. https://doi.org/10.1038/nmat1685.

    Article  CAS  PubMed  Google Scholar 

  138. Weihs D, Mason TG, Teitell MA. Bio-microrheology: a frontier in microrheology. Biophys J. 2006;91(11):4296–305. https://doi.org/10.1529/biophysj.106.081109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Roth KB, Neeves KB, Squier J, et al. High-throughput linear optical stretcher for mechanical characterization of blood cells. Cytometry A. 2016;89(4):391–7. https://doi.org/10.1002/cyto.a.22794.

    Article  CAS  PubMed  Google Scholar 

  140. Szabó B, Szöllösi GJ, Gönci B, et al. Phase transition in the collective migration of tissue cells: experiment and model. Phys Rev E. 2006;74(6):61908. https://doi.org/10.1103/PhysRevE.74.061908.

    Article  CAS  Google Scholar 

  141. Deisboeck TS, Couzin ID. Collective behavior in cancer cell populations. BioEssays. 2009;31(2):190–7. https://doi.org/10.1002/bies.200800084.

    Article  PubMed  Google Scholar 

  142. Sander EE, van Delft S, ten KJP, et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol. 1998;143(5):1385–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu Y, Kanchanawong P, Zaidel-Bar R. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev Cell. 2015;32(2):139–54. https://doi.org/10.1016/j.devcel.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  144. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8. https://doi.org/10.1172/JCI39104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/S0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  146. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  147. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12(3):247–56. https://doi.org/10.1038/ncb2024.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Plutoni C, Bazellieres E, Le Borgne-Rochet M, et al. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J Cell Biol. 2016;212(2):199–217. https://doi.org/10.1083/jcb.201505105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9(12):1392–400. https://doi.org/10.1038/ncb1658.

    Article  CAS  PubMed  Google Scholar 

  150. Ladoux B, Mege R-M, Trepat X. Front-rear polarization by mechanical cues: from single cells to tissues. Trends Cell Biol. 2016;26(6):420–33. https://doi.org/10.1016/j.tcb.2016.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mierke CT. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion. New J Phys. 2013;15(1):15003. https://doi.org/10.1088/1367-2630/15/1/015003.

    Article  CAS  Google Scholar 

  152. Seftor RE, Seftor EA, Gehlsen KR, et al. Role of the alpha v beta 3 integrin in human melanoma cell invasion. Proc Natl Acad Sci U S A. 1992;89(5):1557–61. https://doi.org/10.1073/pnas.89.5.1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene. 2001;20(36):4995–5004. https://doi.org/10.1038/sj.onc.1204554.

    Article  CAS  PubMed  Google Scholar 

  154. Munger JS, Huang X, Kawakatsu H, et al. A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1. Cell. 1999;96(3):319–28. https://doi.org/10.1016/S0092-8674(00)80545-0.

    Article  CAS  PubMed  Google Scholar 

  155. Soldi R, Mitola S, Strasly M, et al. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 1999;18(4):882–92. https://doi.org/10.1093/emboj/18.4.882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bissell MJ, Radisky DC, Rizki A, et al. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation. 2002;70(9-10):537–46. https://doi.org/10.1046/j.1432-0436.2002.700907.x.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dvorak HF, Weaver VM, Tlsty TD, et al. Tumor microenvironment and progression. J Surg Oncol. 2011;103(6):468–74. https://doi.org/10.1002/jso.21709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Heine P, Ehrlicher A, Käs J. Neuronal and metastatic cancer cells: unlike brothers. Biochim Biophys Acta Mol Cell Res. 2015;1853(11):3126–31. https://doi.org/10.1016/j.bbamcr.2015.06.011.

    Article  CAS  Google Scholar 

  159. Ibragimova I, de Cáceres II, Hoffman AM, et al. Global Reactivation of Epigenetically Silenced Genes in Prostate Cancer. Cancer Prev Res (Phila). 2010;3(9):1084–92. https://doi.org/10.1158/1940-6207.CAPR-10-0039.

    Article  CAS  Google Scholar 

  160. Karpf AR, Jones DA. Reactivating the expression of methylation silenced genes in human cancer. Oncogene. 2002;21(35):5496–503. https://doi.org/10.1038/sj.onc.1205602.

    Article  CAS  PubMed  Google Scholar 

  161. Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21(1):103–7. https://doi.org/10.1038/5047.

    Article  CAS  PubMed  Google Scholar 

  162. Riek K, Klatt D, Nuzha H, et al. Wide-range dynamic magnetic resonance elastography. J Biomech. 2011;44(7):1380–6. https://doi.org/10.1016/j.jbiomech.2010.12.031.

    Article  PubMed  Google Scholar 

  163. Bi D, Yang X, Marchetti MC, et al. Motility-driven glass and jamming transitions in biological tissues. Phys Rev X. 2016;6(2):021011. https://doi.org/10.1103/PhysRevX.6.021011.

    PubMed  PubMed Central  Google Scholar 

  164. Bi D, Lopez JH, Schwarz JM, et al. A density-independent rigidity transition in biological tissues. Nat Phys. 2015;11(12):1074–9. https://doi.org/10.1038/NPHYS3471.

    Article  CAS  Google Scholar 

  165. Angelini TE, Hannezo E, Trepat X, et al. Glass-like dynamics of collective cell migration. Proc Natl Acad Sci U S A. 2011;108(12):4714–9. https://doi.org/10.1073/pnas.1010059108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bi D, Lopez JH, Schwarz JM, et al. Energy barriers and cell migration in densely packed tissues. Soft Matter. 2014;10(12):1885–90. https://doi.org/10.1039/c3sm52893f.

    Article  CAS  PubMed  Google Scholar 

  167. Farhadifar R, Roper J-C, Aigouy B, et al. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol. 2007;17(24):2095–104. https://doi.org/10.1016/j.cub.2007.11.049.

    Article  CAS  PubMed  Google Scholar 

  168. Basan M, Prost J, Joanny J-F, et al. Dissipative particle dynamics simulations for biological tissues: rheology and competition. Phys Biol. 2011;8(2):26014. https://doi.org/10.1088/1478-3975/8/2/026014.

    Article  Google Scholar 

  169. Podewitz N, Jülicher F, Gompper G, et al. Interface dynamics of competing tissues. New J Phys. 2016;18(8):83020. https://doi.org/10.1088/1367-2630/18/8/083020.

    Article  Google Scholar 

  170. Zhu Y, Dong Z, Wejinya UC, et al. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J Biomech. 2011;44(13):2356–61. https://doi.org/10.1016/j.jbiomech.2011.07.010.

    Article  PubMed  Google Scholar 

  171. Schuldt C, Karl A, Korber N, et al. Dose-dependent collagen cross-linking of rabbit scleral tissue by blue light and riboflavin treatment probed by dynamic shear rheology. Acta Ophthalmol. 2015;93(5):e328–36. https://doi.org/10.1111/aos.12621.

    Article  CAS  PubMed  Google Scholar 

  172. Reiss-Zimmermann M, Streitberger K-J, Sack I, et al. High resolution imaging of viscoelastic properties of intracranial tumours by multi-frequency magnetic resonance elastography. Clin Neuroradiol. 2015;25(4):371–8. https://doi.org/10.1007/s00062-014-0311-9.

    Article  CAS  PubMed  Google Scholar 

  173. Steinberg MS. On the mechanism of tissue reconstruction by dissociated cells. I. Population kinetics, differential adhesiveness. and the absence of directed migration. Proc Natl Acad Sci. 1962;48(9):1577–82. https://doi.org/10.1073/pnas.48.9.1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Foty RA, Steinberg MS. The differential adhesion hypothesis: a direct evaluation. Dev Biol. 2005;278(1):255–63. https://doi.org/10.1016/j.ydbio.2004.11.012.

    Article  CAS  PubMed  Google Scholar 

  175. Pawlizak S, Fritsch AW, Grosser S, et al. Testing the differential adhesion hypothesis across the epithelial−mesenchymal transition. New J Phys. 2015;17(8):83049. https://doi.org/10.1088/1367-2630/17/8/083049.

    Article  CAS  Google Scholar 

  176. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987;47(12):3239–45.

    CAS  PubMed  Google Scholar 

  177. Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54. https://doi.org/10.1016/j.ccr.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  178. Young JS, Llumsden CE, Stalker AL. The significance of the “tissue pressure” of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J Pathol. 1950;62(3):313–33. https://doi.org/10.1002/path.1700620303.

    Article  CAS  Google Scholar 

  179. Plodinec M, Loparic M, Monnier CA, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol. 2012;7(11):757–65. https://doi.org/10.1038/nnano.2012.167.

    Article  CAS  PubMed  Google Scholar 

  180. Nnetu KD, Knorr M, Käs J, et al. The impact of jamming on boundaries of collectively moving weak-interacting cells. New J Phys. 2012;14(11):115012. https://doi.org/10.1088/1367-2630/14/11/115012.

    Article  Google Scholar 

  181. Mouw JK, Yui Y, Damiano L, et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat Med. 2014;20(4):360–7. https://doi.org/10.1038/nm.3497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Haeger A, Krause M, Wolf K, et al. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta. 2014;1840(8):2386–95. https://doi.org/10.1016/j.bbagen.2014.03.020.

    Article  CAS  PubMed  Google Scholar 

  183. Park J-A, Kim JH, Bi D, et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat Mater. 2015;14(10):1040–8. https://doi.org/10.1038/nmat4357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Farina KL, Wyckoff JB, Rivera J, et al. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res. 1998;58(12):2528–32.

    CAS  PubMed  Google Scholar 

  185. Wang Y-L, Discher DE, editors. Cell mechanics, Methods in cell biology. London: Elsevier; 2007.

    Google Scholar 

  186. Diggs LW. Pathology of sickle cell disease. JAMA. 1971;218(4):600. https://doi.org/10.1001/jama.1971.03190170078040.

    Article  Google Scholar 

  187. Platt OS. Sickle cell anemia as an inflammatory disease. J Clin Invest. 2000;106(3):337–8. https://doi.org/10.1172/JCI10726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Weinberg RA. The biology of cancer. 2nd ed. New York: Garland Science; 2014.

    Google Scholar 

  189. Seltmann K, Fritsch AW, Käs JA, et al. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A. 2013;110(46):18507–12. https://doi.org/10.1073/pnas.1310493110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cross SE, Jin Y-S, Tondre J, et al. AFM-based analysis of human metastatic cancer cells. Nanotechnology. 2008;19(38):384003. https://doi.org/10.1088/0957-4484/19/38/384003.

    Article  PubMed  CAS  Google Scholar 

  191. Lichtman MA. Rheology of leukocytes, leukocyte suspensions, and blood in leukemia possible relationship to clinical manifestations. J Clin Invest. 1973;52(2):350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Baker EL, Bonnecaze RT, Zaman MH. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys J. 2009;97(4):1013–21. https://doi.org/10.1016/j.bpj.2009.05.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mofrad MR. Rheology of the cytoskeleton. Annu Rev Fluid Mech. 2009;41(1):433–53. https://doi.org/10.1146/annurev.fluid.010908.165236.

    Article  Google Scholar 

  194. Guck J, Schinkinger S, Lincoln B, et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J. 2005;88(5):3689–98. https://doi.org/10.1529/biophysj.104.045476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Merkel M, Manning ML. Using cell deformation and motion to predict forces and collective behavior in morphogenesis. Semin Cell Dev Biol. 2016;67:167. https://doi.org/10.1016/j.semcdb.2016.07.029.

    Google Scholar 

  196. Manning ML, Collins E-MS. Focus on physical models in biology: multicellularity and active matter. New J Phys. 2015;17(4):40201. https://doi.org/10.1088/1367-2630/17/4/040201.

    Article  Google Scholar 

  197. Pegoraro AF, Fredberg JJ, Park J-A. Problems in biology with many scales of length: cell–cell adhesion and cell jamming in collective cellular migration. Exp Cell Res. 2016;343(1):54–9. https://doi.org/10.1016/j.yexcr.2015.10.036.

    Article  CAS  PubMed  Google Scholar 

  198. Weigelin B, Friedl P. Cancer cells: stemness shaped by curvature. Nat Mater. 2016;15(8):827–8. https://doi.org/10.1038/nmat4711.

    Article  CAS  PubMed  Google Scholar 

  199. Te Boekhorst V, Preziosi L, Friedl P. Plasticity of cell migration in vivo and in silico. Annu Rev Cell Dev Biol. 2016;32:491–526. https://doi.org/10.1146/annurev-cellbio-111315-125201.

    Article  CAS  Google Scholar 

  200. Collins C, Nelson WJ. Running with neighbors: coordinating cell migration and cell–cell adhesion. Cell Adhes Migr. 2015;36:62–70. https://doi.org/10.1016/j.ceb.2015.07.004.

    CAS  Google Scholar 

  201. Kashef J, Franz CM. Quantitative methods for analyzing cell–cell adhesion in development. Dev Biol. 2015;401(1):165–74. https://doi.org/10.1016/j.ydbio.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Till Möhn, Jürgen Lippoldt, Martin Glaser and Benjamin Wolf for their very helpful comments, discussions, advices for illustrations, and language editing.

Glossary

Self-organization: Self-organization is an active, non-equilibrium process of an open system where energy is constantly dissipated and needs to be resupplied, for instance, to generate forces (such as the actin–myosin power stroke) or to organize dynamic structures (such as the lamellipodium for cell migration) far from the thermodynamic equilibrium [10].

Self-assembly: Self-assembly processes are solely based on equilibrium dynamics and are independent of energy dissipation. They occur spontaneously and tend to minimize the free energy of the system driving it toward its thermodynamic equilibrium without an additional energy source such as ATP or GTP. Self-assembly can occur in closed systems [10].

Persistence Length: Mechanical property quantifying the stiffness of a polymer relative to its length. The length scale on which the direction vectors of both ends of a filament lose their correlation.

Bending Stiffness: The resistance of a beam with unit diameter and length while undergoing bending. The higher the bending stiffness, the harder to flex the unit beam.

Molecular Motors: Molecular machines which consume energy (e.g., ATP, GTP) and convert it into motion or mechanical work.

Treadmilling: Steady-state phenomenon of cytoskeletal filaments, mostly actin, where one filament end depolymerizes and the other end polymerizes, leading to shrinkage and growth at the ends with no net length change of the filament.

Tensile Creep Compliance: The magnitude of the creep response of a unit bulk material for a given unit force load. The higher the tensile creep compliance, the easier it deforms under force load.

Elastic Modulus (Young’s Modulus) or Shear Modulus: The resistance of a unit bulk material under axial load or under shearing load, respectively. The higher the elastic modulus or shear modulus, the harder to deform the material. In incompressible materials, the elastic modulus is three times the shear modulus.

Exocytosis: Active transport of molecules out of the cell via a secretory vesicle as transport carrier.

Endocytosis: Active transport of molecules into the cell via encapsulation of the molecules with the cell membrane and formation of a vesicle as transport carrier.

Receptor Binding: Binding of signaling molecules to transmembrane proteins used for cellular and tissue response.

Mechanosignaling: Sensing and signaling of cells induce a response to mechanical, environmental cues.

Glass-like Material: Solid-phase state of a material, where the strong, noncrystalline entanglement of the molecules, usually polymer chains, prevents an unhindered liquid-like flow and movement of the molecules for low thermal energy. Above the glass transition temperature, the material can flow again.

Amorphous Material: Noncrystalline solid with no long-range order, usually consisting of many clustered domains with different (crystalline) orientations and substructures.

Yield Stress Fluid: A fluid which only starts to flow above a critical stress, the yield stress. For stresses below the yield stress, it behaves like a solid.

Homeostatic Stress: Internal stress of a tissue generated by adhesion forces, which is actively regulated to remain close to constant.

Differential Adhesion Hypothesis: Hypothesis for cellular movement in tissues of different cell types based on thermodynamic principles. Cells with different adhesion forces will minimize their free energy by moving to other cells with similar adhesion forces in order to maximize bonding strength.

Jamming: A quasi-phase transition of a material, where rigidity suddenly increases and fluidity suddenly decreases when the density of cells (or molecules) increases above a critical level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schnauß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kubitschke, H., Morawetz, E.W., Käs, J.A., Schnauß, J. (2018). Physical Properties of Single Cells and Collective Behavior. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics