Skip to main content

Methods and Approaches in Ultrasound Elastography

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Medical ultrasound is one of the most common medical imaging modalities. It allows real-time visualization of the morphology of soft tissues in the human body based on backscattered compression waves in the high-frequency (MHz) range. Special technologies are sensitive to organ functions such as blood flow and tissue strain. Over the past decade, ultrasound-based elastography (USE) has been developed and became widely applied in the clinic for the assessment of tissue stiffness in a variety of conditions including malignant tumors and liver fibrosis. The clinical benefit of USE has been overwhelmingly demonstrated in a large number of clinical studies and reviews. Unlike other sonographic methods, USE is not a single technique but rather a set of methodological ideas and approaches centered on the mechanical stimulation of soft tissues, deformation readout, and stiffness reconstruction. This chapter provides an overview of the key concepts of current USE methods and their potential clinical applications. Many of the methods discussed are still experimental, while others have already been replaced by more sophisticated quantitative and image-resolved methods. The aim of this chapter is to guide readers through the pros and cons of individual concepts, thereby helping them to gain insight into the basic principles of USE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Tzschätzsch H. Entwicklung, anwendung und validierung der zeitharmonischen in vivo ultraschallelastografie an der menschlichen leber und am menschlichen herzen. Dissertation. Humboldt Universität Berlin. 2016.

    Google Scholar 

  2. Sarvazyan AP, Urban MW, Greenleaf JF. Acoustic waves in medical imaging and diagnostics. Ultrasound Med Biol. 2013;39(7):1133–46. https://doi.org/10.1016/j.ultrasmedbio.2013.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sugimoto T, Ueha S, Itoh K. Tissue hardness measurement using the radiation force of focused ultrasound. In: IEEE symposium on ultrasonics. IEEE; 1990. p. 1377–1380. https://doi.org/10.1109/ULTSYM.1990.171591.

  4. Lu JY. 2D and 3D high frame rate imaging with limited diffraction beams. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(4):839–56. https://doi.org/10.1109/58.655200.

    Article  Google Scholar 

  5. Cheng J, Lu J. Extended high-frame rate imaging method with limited-diffraction beams. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(5):880–99. https://doi.org/10.1109/TUFFC.2006.1632680.

    Article  PubMed  Google Scholar 

  6. Montaldo G, Tanter M, Bercoff J, Benech N, Fink M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(3):489–506. https://doi.org/10.1109/TUFFC.2009.1067.

    Article  PubMed  Google Scholar 

  7. Song TK, Chang JH. Synthetic aperture focusing method for ultrasound imaging based on planar waves. 2004.

    Google Scholar 

  8. Bamber J, Cosgrove D, Dietrich C, Fromageau J, Bojunga J, Calliada F, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 2013;34(2):169–84. https://doi.org/10.1055/s-0033-1335205.

    Article  CAS  PubMed  Google Scholar 

  9. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas J-M, Gilja O, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 2013;34(3):238–53. https://doi.org/10.1055/s-0033-1335375.

    Article  CAS  PubMed  Google Scholar 

  10. Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng. 2003;5(1):57–78. https://doi.org/10.1146/annurev.bioeng.5.040202.121623.

    Article  CAS  PubMed  Google Scholar 

  11. Parker KJ, Doyley MM, Rubens DJ. Corrigendum: imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2012;57(16):5359–60. https://doi.org/10.1088/0031-9155/57/16/5359.

    Article  Google Scholar 

  12. Parker KJ, Taylor LS, Gracewski S, Rubens DJ. A unified view of imaging the elastic properties of tissue. J Acoust Soc Am. 2005;117(5):2705. https://doi.org/10.1121/1.1880772.

    Article  PubMed  Google Scholar 

  13. Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of Elastography - an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7(4):255–82. https://doi.org/10.2174/157340511798038684.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zaleska-Dorobisz U, Kaczorowski K, Pawluś A, Puchalska A, Inglot M. Ultrasound elastography - review of techniques and its clinical applications. Adv Clin Exp Med. 2014;23(4):645–55. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25166452

    Article  PubMed  Google Scholar 

  15. Ophir J. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34. https://doi.org/10.1016/0161-7346(91)90079-W.

    Article  CAS  PubMed  Google Scholar 

  16. Varghese T. Quasi-static ultrasound elastography. Ultrasound Clin. 2009;4(3):323–38. https://doi.org/10.1016/j.cult.2009.10.009.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oberai AA, Gokhale NH, Goenezen S, Barbone PE, Hall TJ, Sommer AM, Jiang J. Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys Med Biol. 2009;54(5):1191.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fleming AD, Xia X, McDicken WN, Sutherland GR, Fenn L. Myocardial velocity gradients detected by Doppler imaging. Br J Radiol. 1994;67(799):679–88. https://doi.org/10.1259/0007-1285-67-799-679.

    Article  CAS  PubMed  Google Scholar 

  19. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–35. https://doi.org/10.1016/S0301-5629(98)00110-0.

    Article  CAS  PubMed  Google Scholar 

  20. Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28(2):227–35. https://doi.org/10.1016/S0301-5629(01)00499-9.

    Article  PubMed  Google Scholar 

  21. Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2012;7(4):328–39. https://doi.org/10.2174/157340511798038657.

    Article  Google Scholar 

  22. Fatemi M. Ultrasound-stimulated vibro-acoustic spectrography. Science. 1998;280(5360):82–5. https://doi.org/10.1126/science.280.5360.82.

    Article  CAS  PubMed  Google Scholar 

  23. Fatemi M, Greenleaf JF. Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc Natl Acad Sci. 1999;96(12):6603–8. https://doi.org/10.1073/pnas.96.12.6603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Urban MW, Alizad A, Aquino W, Greenleaf JF, Fatemi M. A review of vibro-acoustography and its applications in medicine. Curr Med Imaging Rev. 2011;7(4):350–9. https://doi.org/10.2174/157340511798038648.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lerner RM, Parker KJ, Holen J, Gramiak R, Waag RC. Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets. Acoust Imaging. 1988;16:317–27. https://doi.org/10.1007/978-1-4613-0725-9_31.

    Article  Google Scholar 

  26. Parker KJ. The evolution of vibration sonoelastography. Curr Med Imaging Rev. 2011;7(4):283–91. https://doi.org/10.2174/157340511798038675.

    Article  Google Scholar 

  27. Tzschätzsch H, Elgeti T, Rettig K, Kargel C, Klaua R, Schultz M, et al. In vivo time harmonic elastography of the human heart. Ultrasound Med Biol. 2012;38(2):214–22. https://doi.org/10.1016/j.ultrasmedbio.2011.11.002.

    Article  PubMed  Google Scholar 

  28. Elgeti T, Beling M, Hamm B, Braun J, Sack I. Elasticity-based determination of isovolumetric phases in the human heart. J Cardiovasc Magn Reson. 2010;12(1):60. https://doi.org/10.1186/1532-429X-12-60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sack I, Rump J, Elgeti T, Samani A, Braun J. MR elastography of the human heart: noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations. Magn Reson Med. 2009;61(3):668–77. https://doi.org/10.1002/mrm.21878.

    Article  PubMed  Google Scholar 

  30. Tzschätzsch H, Hättasch R, Knebel F, Klaua R, Schultz M, Jenderka K-V, et al. Isovolumetric elasticity alteration in the human heart detected by in vivo time-harmonic elastography. Ultrasound Med Biol. 2013;39(12):2272–8. https://doi.org/10.1016/j.ultrasmedbio.2013.07.003.

    Article  PubMed  Google Scholar 

  31. Pernot M, Konofagou EE. Electromechanical imaging of the myocardium at normal and pathological states. IEEE Ultrason Symp. 2005;2:1091–4. https://doi.org/10.1109/ULTSYM.2005.1603040.

    Google Scholar 

  32. Konofagou E, Lee W-N, Luo J, Provost J, Vappou J. Physiologic cardiovascular strain and intrinsic wave imaging. Annu Rev Biomed Eng. 2011;13(1):477–505. https://doi.org/10.1146/annurev-bioeng-071910-124721.

    Article  CAS  PubMed  Google Scholar 

  33. Kanai H, Koiwa Y. Myocardial rapid velocity distribution. Ultrasound Med Biol. 2001;27(4):481–98. https://doi.org/10.1016/S0301-5629(01)00341-6.

    Article  CAS  PubMed  Google Scholar 

  34. Kanai H. Propagation of vibration caused by electrical excitation in the normal human heart. Ultrasound Med Biol. 2009;35(6):936–48. https://doi.org/10.1016/j.ultrasmedbio.2008.12.013.

    Article  PubMed  Google Scholar 

  35. Pernot M, Fujikura K, Fung-Kee-Fung SD, Konofagou EE. ECG-gated, mechanical and electromechanical wave imaging of cardiovascular tissues in vivo. Ultrasound Med Biol. 2007;33(7):1075–85. https://doi.org/10.1016/j.ultrasmedbio.2007.02.003.

    Article  PubMed  Google Scholar 

  36. Kanai H, Kawabe K, Takano M, Murata R, Chubachi N, Koiwa Y. New method for evaluating local pulse wave velocity by measuring vibrations on arterial wall. Electron Lett. 1994;30(7):534–6. https://doi.org/10.1049/el:19940393.

    Article  Google Scholar 

  37. Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34(4):546–58. https://doi.org/10.1016/j.ultrasmedbio.2007.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruno C, Minniti S, Mucell BA, Roberto P. ARFI: from basic principles to clinical applications in diffuse chronic disease—a review. Insights Imaging. 2016;7:735–46.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nightingale K, McAleavey S, Trahey G. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol. 2003;29(12):1715–23. https://doi.org/10.1016/j.ultrasmedbio.2003.08.008.

    Article  PubMed  Google Scholar 

  40. Cheng KL, Choi YJ, Shim WH, Lee JH, Baek JH. Virtual touch tissue imaging quantification shear wave elastography: prospective assessment of cervical lymph nodes. Ultrasound Med Biol. 2016;42(2):378–86. https://doi.org/10.1016/j.ultrasmedbio.2015.10.003.

    Article  PubMed  Google Scholar 

  41. Ianculescu V, Ciolovan LM, Dunant A, Vielh P, Mazouni C, Delaloge S, et al. Added value of virtual touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol. 2014;83(5):773–7.

    Article  PubMed  Google Scholar 

  42. Leschied JR, Dillman JR, Bilhartz J, Heider A, Smith EA, Lopez MJ. Shear wave elastography helps differentiate biliary atresia from other neonatal/infantile liver diseases. Pediatr Radiol. 2015;45(3):366–75. https://doi.org/10.1007/s00247-014-3149-z.

    Article  PubMed  Google Scholar 

  43. Song P, Zhao H, Manduca A, Urban MW, Greenleaf JF, Chen S. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans Med Imaging. 2012;31(9):1821–32. https://doi.org/10.1109/TMI.2012.2205586.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mehrmohammadi M, Song P, Meixner DD, Fazzio RT, Chen S, Greenleaf JF, et al. Comb-push ultrasound shear elastography (CUSE) for evaluation of thyroid nodules: preliminary in vivo results. IEEE Trans Med Imaging. 2015;34(1):97–106. https://doi.org/10.1109/TMI.2014.2346498.

    Article  PubMed  Google Scholar 

  45. Denis M, Mehrmohammadi M, Song P, Meixner DD, Fazzio RT, Pruthi S, et al. Comb-push ultrasound shear elastography of breast masses: initial results show promise. PLoS One. 2015;10(3):e0119398. https://doi.org/10.1371/journal.pone.0119398.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409. https://doi.org/10.1109/TUFFC.2004.1295425.

    Article  PubMed  Google Scholar 

  47. McAleavey SA, Menon M, Orszulak J. Shear-modulus estimation by application of spatially- modulated impulsive acoustic radiation force. Ultrason Imaging. 2007;104(2007):87–104.

    Article  Google Scholar 

  48. McAleavey S, Menon M, Elegbe E. Shear modulus imaging with spatially-modulated ultrasound radiation force. Ultrason Imaging. 2009;31(4):217–34. https://doi.org/10.1177/016173460903100403.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sandrin L, Tanter M, Gennisson J-L, Catheline S, Fink M. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):436–46. https://doi.org/10.1109/58.996561.

    Article  PubMed  Google Scholar 

  50. Konofagou EE, Hynynen K. Localized harmonic motion imaging: theory, simulations and experiments. Ultrasound Med Biol. 2003;29(10):1405–13. https://doi.org/10.1016/S0301-5629(03)00953-0.

    Article  PubMed  Google Scholar 

  51. Konofagou EE, Maleke C, Vappou J. Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring. Curr Med Imaging Rev. 2012;8:16. https://doi.org/10.2174/157340512799220616.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen S, Fatemi M, Greenleaf JF. Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am. 2004;115(6):2781. https://doi.org/10.1121/1.1739480.

    Article  PubMed  Google Scholar 

  53. Urban MW, Chen S, Fatemi M. A review of shearwave dispersion ultrasound vibrometry (SDUV) and its applications. Curr Med Imaging Rev. 2012;8(1):27–36. https://doi.org/10.2174/157340512799220625.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nenadic IZ, Urban MW, Mitchell SA, Greenleaf JF. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids. Phys Med Biol. 2011;56(7):2245–64. https://doi.org/10.1088/0031-9155/56/7/021.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yamakoshi Y, Sato J, Sato T. Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans Ultrason Ferroelectr Freq Control. 1990;37(2):45–53. https://doi.org/10.1109/58.46969.

    Article  CAS  PubMed  Google Scholar 

  56. Wu Z, Taylor LS, Rubens DJ, Parker KJ. Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials. Phys Med Biol. 2004;49(6):911–22. https://doi.org/10.1088/0031-9155/49/6/003.

    Article  PubMed  Google Scholar 

  57. Hazard C, Hah Z, Rubens D, Parker K. Integration of crawling waves in an ultrasound imaging system. Part 1: system and design considerations. Ultrasound Med Biol. 2012;38(2):296–311. https://doi.org/10.1016/j.ultrasmedbio.2011.10.026.

    Article  PubMed  Google Scholar 

  58. Hah Z, Hazard C, Mills B, Barry C, Rubens D, Parker K. Integration of crawling waves in an ultrasound imaging system. Part 2: signal processing and applications. Ultrasound Med Biol. 2012;38(2):312–23. https://doi.org/10.1016/j.ultrasmedbio.2011.10.014.

    Article  PubMed  Google Scholar 

  59. Hoyt K, Castaneda B, Parker KJ. Two-dimensional sonoelastographic shear velocity imaging. Ultrasound Med Biol. 2008;34(2):276–88. https://doi.org/10.1016/j.ultrasmedbio.2007.07.011.

    Article  PubMed  Google Scholar 

  60. Tzschätzsch H, Ipek-Ugay S, Guo J, Streitberger K-J, Gentz E, Fischer T, et al. In vivo time-harmonic multifrequency elastography of the human liver. Phys Med Biol. 2014;59(7):1641–54. https://doi.org/10.1088/0031-9155/59/7/1641.

    Article  PubMed  Google Scholar 

  61. Tzschätzsch H, Nguyen Trong M, Scheuermann T, Fischer T, Schultz M, Braun J, Sack I. Two-dimensional time-harmonic elastography of the human liver and spleen. Ultrasound Med Biol. 2016;16:30163–6. https://doi.org/10.1016/j.ultrasmedbio.2016.07.004.

    Google Scholar 

  62. Zhao H, Song P, Meixner DD, Kinnick RR, Callstrom MR, Sanchez W, et al. External vibration multi-directional ultrasound shearwave elastography (EVMUSE): application in liver fibrosis staging. IEEE Trans Med Imaging. 2014;33(11):2140–8. https://doi.org/10.1109/TMI.2014.2332542.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ipek-Ugay S, Tzschätzsch H, Braun J, Fischer T, Sack I. Physiological reduction of hepatic venous blood flow by Valsalva maneuver decreases liver stiffness. J Ultrasound Med. 2017;36:1305.

    Article  PubMed  Google Scholar 

  64. Ipek-Ugay S, Tzschätzsch H, Hudert C, Marticorena Garcia SR, Fischer T, Braun J, et al. Time harmonic elastography reveals sensitivity of liver stiffness to water ingestion. Ultrasound Med Biol. 2016;42(6):1289–94. https://doi.org/10.1016/j.ultrasmedbio.2015.12.026.

    Article  PubMed  Google Scholar 

  65. Tzschätzsch H, Ipek-Ugay S, Nguyen Trong M, Guo J, Eggers J, Gentz E, et al. Multifrequency time-harmonic elastography for the measurement of liver viscoelasticity in large tissue windows. Ultrasound Med Biol. 2015;41(3):724–33. https://doi.org/10.1016/j.ultrasmedbio.2014.11.009.

    Article  PubMed  Google Scholar 

  66. Tzschätzsch H, Sack I, Marticorena Garcia SR, Ipek-Ugay S, Braun J, Hamm B, Althoff CE. Time-harmonic elastography of the liver is sensitive to intrahepatic pressure gradient and liver decompression following transjugular intrahepatic portosystemic shunt (TIPS) implantation. Ultrasound Med Biol. 2017;43:595.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Tzschätzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tzschätzsch, H. (2018). Methods and Approaches in Ultrasound Elastography. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics