Skip to main content

A 3D Magnetostrictive Preisach Model for the Simulation of Magneto-Electric Composites on Multiple Scales

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 86))

Abstract

In this contribution we derive a three dimensional ferroelectric Preisach model based on an orientation distribution function. Therefore, the classical scalar Preisach model is modified and applied on the individual orientations, which are uniformly distributed in the three dimensional space. This model is used to simulate the behavior of magneto-electric (ME) composites. Such effective multiferroic materials combine two or more ferroic characteristics and can exhibit a coupling between electric polarization and magnetization. Since most of the single-phase ME materials exhibit a weak magneto-electric coupling at low temperatures, two-phase ME composites produce an ME coupling at room temperature. The basic idea for the manufacturing of ME composites is to use the interaction of the ferroelectric and magnetostrictive phases in order to generate strain-induced ME properties. However, in contrast to single-phase multiferroics, the ME coefficient of composites significantly depends on the microscopic morphology and the electro- as well as magneto-mechanical properties of the individual constituents. Therefore, we implemented the 3D Preisach model into the FE\(^2\)-method in order to depict the realistic ferroelectric behavior and directly incorporate the microstructure by the consideration of underlying representative volume elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Astrov, D.N.: Magnetoelectric effect in chromium oxide. J. Exp. Theor. Phys. 40, 1035–1041 (1961)

    Google Scholar 

  2. Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mechanica 226, 2789–2806 (2015)

    Google Scholar 

  3. Bermúdez, A., Dupré, L., Gómez, D., Venegas, P.: Electromagnetic computations with Preisach hysteresis model. Finite Elem. Anal. Des. 126, 65–74 (2017)

    Google Scholar 

  4. Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nature Mater. 7(6), 425–426 (2008). ISSN 1476-1122

    Google Scholar 

  5. Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)

    Google Scholar 

  6. Cheong, S. -W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nature Mater. 6(1):13–20 (2007). ISSN 1476-1122

    Google Scholar 

  7. Crottaz, O., Rivera, J. -P., Revaz, B., Schmid, H.: Magnetoelectric effect of Mn\(_3\)B\(_7\)O\(_{13}\)I boracite. Ferroelectrics 204, 125–133 (1997)

    Google Scholar 

  8. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Google Scholar 

  9. Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6(5), 348–351 (2007)

    Google Scholar 

  10. Etier, M., Shvartsman, V.V., Gao, Y., Landers, J., Wende, H., Lupascu, D.C.: Magnetoelectric effect in (0–3) CoFe2O4-BaTiO3 (20/80) composite ceramics prepared by the organosol route. Ferroelectrics 448, 77–85 (2013)

    Google Scholar 

  11. Feyel, F., Chaboche, J. -L.: FE\(^2\) multiscale approach for modelling the elastoviscoplastic behavior of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)

    Google Scholar 

  12. Hegewald, T., Kaltenbacher, B., Kaltenbacher, M., Lerch, R.: Efficient modeling of ferroelectric behavior for the analysis of piezoceramic actuators. J. Intell. Mater. Syst. Struct. (2008)

    Google Scholar 

  13. Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Google Scholar 

  14. Hill, R.: Elastic properties of reinforced solids—some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Google Scholar 

  15. Hughes, D., Wen, J.T.: Preisach modeling of piezoceramic and shape memory alloy hysteresis. Smart Mater. Struct. 6, 287–300 (1997)

    Google Scholar 

  16. Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interaction and a polarization switching model. Acta Metallurgica et Materialia 43, 2073–2084 (1995)

    Google Scholar 

  17. Kaltenbacher, M., Kaltenbacher B., Hegewald, T., Lerch, R.: Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J. Intell. Mater. Syst. Struct. (2010)

    Google Scholar 

  18. Kamlah, M.: Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Continuum Mech. Thermodyn. 13, 219–268 (2001)

    Google Scholar 

  19. Kamlah, M., Tsakmakis, C.: Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics. Int. J. Solids Struct. 36, 669–695 (1999)

    Google Scholar 

  20. Kamlah, M., Liskowsky, A.C., McMeeking, R.M., Balke, H.: Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. Int. J. Solids Struct. 42, 2949–2964 (2005)

    Google Scholar 

  21. Keip, M. -A., Rambausek, M.: A multiscale approach to the computational characterization of magnetotheological elastomers. Int. J. Numerical Methods Eng. 107, 338–360 (2015)

    Google Scholar 

  22. Keip, M. -A., Schrade, D., Thai, H.N.M., Schröder, J., Svendsen, B., Müller, R., Gross, D.: Coordinate-invariant phase field modeling of ferroelectrics, Part II: application to composites and polycrystals. GAMM-Mitteilungen 38(1), 115–131 (2015)

    Google Scholar 

  23. Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)

    Google Scholar 

  24. Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27, 37–48 (2001)

    Google Scholar 

  25. Kurzhöfer, I.: Mehrskalen-Modellierung polykristalliner Ferroelektrika basierend auf diskreten Orientierungsverteilungsfunktionen. Ph.D. thesis, University of Duisburg-Essen (2007)

    Google Scholar 

  26. Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M. -A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)

    Google Scholar 

  27. Labusch, M., Keip, M. -A., Shvartsman, V.V., Lupascu, D.C., Schröder, J.: On the influence of ferroelectric polarization states on the magneto-electric coupling in two-phase composites. Technische Mechanik 36, 73–87 (2016)

    Google Scholar 

  28. Landis, C.M., Wang, J., Sheng, J.: Micro-electromechanical determination of the possible remanent strain and polarization states in polycrystalline ferroelectrics and the implications for phenomenological constitutive theories. J. Intell. Mater. Syst. Struct. 15, 513–525 (2004)

    Google Scholar 

  29. Mandel, J., Dantu, P.: Conribution à l’étude théorique et expérimentale du coefficient d’élasticité d’un milieu hétérogène mais statistiquement homogène. Annales des Ponts et Chaussées (1963)

    Google Scholar 

  30. Martin, L.W., Chu, Y. -H., Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng.: R: Rep. 68(46), 89–133 (2010). ISSN 0927-796X

    Google Scholar 

  31. Mayergoyz, I.D.: Mathematical models of hysteresis. IEEE Trans. Magn. 22, 603–608 (1986)

    Google Scholar 

  32. Mayergoyz, I.D., Friedman, G.: Generalized Preisach model of hysteresis. IEEE Trans. Magn. 24, 212–217 (1988)

    Google Scholar 

  33. Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Eng. 192, 559–591 (2003)

    Google Scholar 

  34. Miehe, C., Bayreuther, C.G.: On mutiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int. J. Numer. Methods Eng. 71, 1135–1180 (2007)

    Google Scholar 

  35. Miehe, C., Schotte, J., Schröder, J.: Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1–4), 372–382 (1999)

    Google Scholar 

  36. Miehe, C., Vallicotti, D., Teichtmeister, S.: Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. Application to soft matter EE, ME and MEE composites. Comput. Methods Appl. Mech. Eng. 300, 294–346 (2016)

    Google Scholar 

  37. Nan, C. -W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Google Scholar 

  38. Nan, C. -W., Bichurin, M.I., Shuxiang Dong, D. Viehland, Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)

    Google Scholar 

  39. Perić, D., de Souza Neto, E.A., Feijóo, R.A., Partovi, M., Carneiro Molina A.J.: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Int. J. Numer. Methods Eng. 87, 149–170 (2011)

    Google Scholar 

  40. Preisach, F.: über die magnetische Nachwirkung. Zeitschrift für Physik 94, 277–302 (1935)

    Google Scholar 

  41. Priya, S., Islam, R., Dong, S.X., Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceramics 19(1), 147–164 (2007)

    Google Scholar 

  42. Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nature Mater. 6(1):21–29 (2007). ISSN 1476-1122

    Google Scholar 

  43. Rivera, J. -P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 165–180 (1994)

    Google Scholar 

  44. Rivera, J. -P., Schmid, H.: On the birefringence of magnetoelectric BiFeO\(_3\). Ferroelectrics 204, 23–33 (1997)

    Google Scholar 

  45. Robert, G., Damjanovic, D., Setter, N., Turik, A.V.: Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics. J. Appl. Phys. 89, 5067–5074 (2001)

    Google Scholar 

  46. Ryu, J., Priya, S., Uchino, K., Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceramics 8, 107–119 (2002)

    Google Scholar 

  47. Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  48. Schröder, J.: Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput. Mater. Sci. 46(3), 595–599 (2009)

    Google Scholar 

  49. Schröder, J.: A numerical two-scale homogenization scheme: the FE\(^2\)–method. In: Schröder, J., Hackl, K. (eds.) Plasticity and Beyond. CISM Courses and Lectures, vol. 55, pp. 1–64. Springer (2014)

    Google Scholar 

  50. Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Archive Appl. Mech. 73, 533–552 (2004)

    Google Scholar 

  51. Schröder, J., Keip, M. -A.: Two-scale homogenization of electromechanically coupled boundary value problems. Comput. Mech. 50, 229–244 (2012)

    Google Scholar 

  52. Schröder, J., Labusch, M., Keip, M. -A., Kiefer, B., Brands, D., Lupascu, D.C.: Computation of non-linear magneto-electric product properties of 0-3 composites. GAMM-Mitteilungen (2015)

    Google Scholar 

  53. Schröder, J., Labusch, M., Keip, M. -A.: Algorithmic two-scale transition for magneto-electro-mechanically coupled Problems: FE\(^2\)-Sheme: Localization and homogenization. Comput. Methods Appl. Mech. Eng. 302, 253–280 (2016)

    Google Scholar 

  54. Shvartsman, V.V., Alawneh, F., Borisov, P., Kozodaev, D., Lupascu, D.C.: Converse magnetoelectric effect in cofe\(_2\)o\(_4\)-batio\(_3\) composites with a core-shell structure. Smart Mater. Struct. 20 (2011)

    Google Scholar 

  55. Song, G., Zhao, J., Zhou, X., De Abreu-García, J.A.: Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans. Mechatron. 10, 198–209 (2005)

    Google Scholar 

  56. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Google Scholar 

  57. Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 1–26 (2010)

    Google Scholar 

  58. Stancu, A., Bissell, P.R., Chantrell, R.W.: Interparticle interactions in magnetic recording maedia as obtained from high-order measurements by a Preisach model. J. Appl. Phys. 87, 8645–8652 (2000)

    Google Scholar 

  59. Temizer, I., Wriggers, P.: On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput. Methods Appl. Mech. Eng. 198, 495–510 (2008)

    Google Scholar 

  60. Terada, K., Hori, M., Kyoya, T., Kikuchi, N.: Simulation of the multi-scale convergence in computational homogenization approach. Int. J. Solids Struct. 37, 2285–2311 (2000)

    Google Scholar 

  61. van der Sluis, O., Schreurs, P.J.G., Brekelmans, W.A.M., Meijer, H.E.H.: Overall behavior of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mech. Mater. 32, 449–462 (2000)

    Google Scholar 

  62. van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  63. Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)

    Google Scholar 

  64. Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. Nature Asia-Pacific, Asia Mater. 2, 61–68 (2010)

    Google Scholar 

  65. Yu, Y., Xiao, Z., Naganathan, N.G., Dukkipati, R.V.: Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system. Mech. Mach. Theory 37, 75–89 (2002)

    Google Scholar 

  66. Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput. Methods Appl. Mech. Eng. 199, 3250–3269 (2010)

    Google Scholar 

  67. Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics. Springer (2012)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the German Research Foundation (DFG) in the framework of the research unit 1509 “Ferroic Functional Materials—Multiscale Modeling and Experimental Characterization” (SCHR 570/12-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, J., Labusch, M. (2018). A 3D Magnetostrictive Preisach Model for the Simulation of Magneto-Electric Composites on Multiple Scales. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics