Skip to main content

Modeling of Material Deformation Responses Using Gradient Elasticity Theory

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 86))

  • 1578 Accesses

Abstract

Realistic description of material deformation responses demands more accurate modeling at both macroscopic and microscopic scales. Multiscale techniques employing several homogenization schemes are mostly used, in which a transition between nonlocal and local continuum formulations has been performed. Therein the transition of state variables is not defined fully consistently. In the present contribution a novel multiscale approach is proposed, where the same nonlocal theories at both scales are coupled, and discretisation is performed only by means of the \(C^{1}\) finite element based on the strain gradient theory. The advantage of the new computational procedure is discussed in comparison with the approach using a local concept at microlevel. Employing the strain gradient continuum theory, a damage model for quasi-brittle materials is proposed and embedded into the \(C^{1}\) continuity triangular finite element. The softening response of homogeneous materials under assumption of isotropic damage law is considered. The regularization superiority over the conventional implicit gradient enhancement procedure is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Čanžar, P., Tonković, Z., Kodvanj, J.: Microstructure influence on fatigue behaviour of nodular cast iron. Mater. Sci. Eng. A 556, 88–99 (2012)

    Article  Google Scholar 

  2. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193, 5525–5550 (2004)

    Article  MATH  Google Scholar 

  3. Miehe, C., Koch, A.: Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch. Appl. Mech. 72, 300–317 (2002)

    Article  MATH  Google Scholar 

  4. Kaczmarczyk, L.K., Pearce, C.J., Bicanic, N.: Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. Int. J. Numer. Methods Eng. 74, 506–522 (2008)

    Article  MATH  Google Scholar 

  5. Dang, T.D., Sankar, B.V.: Meshless local Petrov-Galerkin micromechanical analysis of periodic composites including shear loadings. Comput. Model. Eng. Sci. 26, 169 (2008)

    MATH  Google Scholar 

  6. Ahmadi, I., Aghdam, M.M.: A truly generalized plane strain meshless method for combined normal and shear loading of fibrous composites. Eng. Anal. Boundary Elem. 35, 395–403 (2011)

    Article  MATH  Google Scholar 

  7. Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Eng. 192, 559–591 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hain, M., Wriggers, P.: Numerical homogenization of hardened cement paste. Comput. Mech. 42, 197–212 (2008)

    Article  MATH  Google Scholar 

  9. Temizer, Ä., Wriggers, P.: An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures. Comput. Meth. Appl. Mech. Eng. 200, 2639–2661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  11. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lesičar, T., Tonković, Z., Sorić, J.: C1 continuity finite element formulation in second-order computational homogenization scheme. J. Multiscale Modell. 04, 1250013 (2012)

    Article  Google Scholar 

  13. Lesičar, T., Tonković, Z., Sorić, J.: Second-order computational homogenization scheme preserving microlevel C1 continuity. Key Eng. Mater. 627, 381–384 (2015)

    Article  Google Scholar 

  14. ABAQUS/Standard. ABAQUS Dassault Systemes, Providence, RI, USA (2014)

    Google Scholar 

  15. Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P.: Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39, 3391–3403 (1996)

    Article  MATH  Google Scholar 

  16. Bažant, Z.P., Belytschko, T., Chang, T.P.: Continuum theory for strain-softening. J. Eng. Mech. 110(2), 666–1692 (1984)

    Google Scholar 

  17. Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., Geers, M.G.D.: Gradient-enhanced damage modelling of concrete fracture. Mech. Cohes. Frict. Mater. 3, 323–342 (1998)

    Article  MATH  Google Scholar 

  18. De Borst, R., Mühlhaus, H.-B.: Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods. Eng. 35, 521–539 (1992)

    Article  MATH  Google Scholar 

  19. Engelen, R.A.B., Geers, M.G.D., Baaijens, F.P.T.: Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19, 403–433 (2003)

    Article  MATH  Google Scholar 

  20. Sluys, L.J., de Borst, R., Muhlhaus, H.B.: Wave propagation, localization and dispersion in a gradient-dependent medium. Int. J. Solids Struct. 30, 1153–1171 (1993)

    Article  MATH  Google Scholar 

  21. Simone, A., Askes, H., Sluys, L.J.: Incorrect initiation and propagation of failure in non-local and gradient enhanced media. Int. J. Solids. Struct. 41, 351–363 (2004)

    Article  MATH  Google Scholar 

  22. Sun, G., Poh, L.H.: Homogenization of intergranular fracture towards a transient gradient damage model. J. Mech. Phys. Solids 95, 374–392 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Misra, A.: Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput. Model. Eng. Sci. 64(1), 1–36 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Geers, M.G.D., de Borst, R., Brekelmans, W.A.M., Peerlings, R.H.J.: Strain-based transient-gradient damage model for failure analyses. Comput. Methods Appl. Mech. Eng. 160, 133–153 (1998)

    Article  MATH  Google Scholar 

  25. Lesičar, T., Tonković, Z., Sorić, J.: A second-order two-scale homogenization procedure using C1 macrolevel discretization. Comput. Mech. 54, 425–441 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lesičar, T.: Multiscale modeling of heterogeneous materials using second-order homogenization. Faculty of Mechanical Engineering and Naval Architecture, 183 pp. Doctoral Thesis, University of Zagreb, Zagreb

    Google Scholar 

  27. Lesičar, T., Tonković, Z., Sorić, J.: Two-scale computational approach using strain gradient theory at microlevel. Int. J. Mech. Sci. 126, 67–78 (2017)

    Article  Google Scholar 

  28. Mazars, J., Pijaudier-Cabot, G.: Continuum damage theory-application to concrete. J. Eng. Mech. 115(2), 345–365 (1989)

    Article  Google Scholar 

  29. De Vree, J.H.P., Brekelmans, W.A.M., van Gils, M.A.J.: Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 55, 581–588 (1995)

    Article  MATH  Google Scholar 

  30. Peerlings, R.H.J.: Enhanced damage modeling for fracture and fatigue. Ph.D. Thesis (1999). Eindhoven University of Technology, Netherlands

    Google Scholar 

  31. Kaczmarczyk, L., Pearce, C.J., Bićanić, N.: Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. Int. J. Numer. Methods Eng. 74, 506–522 (2008)

    Article  MATH  Google Scholar 

  32. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M.: Size of a representative volume element in a second-order computational homogenization framework. Int. J. Multiscale Comput. Eng. 2(4), 575–598 (2004)

    Article  MATH  Google Scholar 

  33. Otsuka, K., Date, H.: Fracture process zone in concrete tension specimen. Eng. Fract. Mech. 65, 111–131 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Alexander von Humboldt Foundation, Germany, as well as by the Croatian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurica Sorić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorić, J., Lesičar, T., Putar, F., Tonković, Z. (2018). Modeling of Material Deformation Responses Using Gradient Elasticity Theory. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics