Skip to main content

Nanostructured Oxides: Cross-Sectional Scanning Probe Microscopy for Complex Oxide Interfaces

  • Chapter
  • First Online:
Advances in Nanomaterials
  • 1498 Accesses

Abstract

The electronic properties of the interfaces between two dissimilar materials have shown emerging phenomena that are not seen in the composed bulk counterparts. For example, the phenomena at semiconductor interfaces provided the foundation of modern electronic devices for decades. Recently, complex oxide materials exhibit a variety of functionalities owing to its strong coupling nature, in which the electron entity coupled strongly to lattice, orbital, and spin degrees of freedom. The interfaces of dissimilar complex oxides have even shown intriguing properties not seen in the composite bulk complex oxide materials. These interfacial phenomena carry the promises for the next-generation electronic devices and many other applications. With the development of the synthesis techniques, controllable high-quality complex oxide heterojunctions can now be routinely fabricated. On the other hand, the characterization tools that aim to probe the interfacial properties are still needed. Among the developing tools, the cross-sectional scanning probe microscopy (XSPM) provides the valuable information on resolving the local physical properties at interfaces in atomic-scale. Here, we briefly reviewed the recent developed XSPM and focused on distinct phenomena that were studied by it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  2. Okamoto S, Millis AJ (2004) Electronic reconstruction at an interface between a Mott Insulator and a Band Insulator. Nature 428:630–633

    Article  Google Scholar 

  3. Ramirez AP (1997) Colossal magnetoresistance. J Phys Condens Matter 9:8171–8199

    Article  Google Scholar 

  4. Orenstein J, Millis AJ (2000) Advances in the physics of high-temperature superconductivity. Science 288(5465):468–474

    Article  Google Scholar 

  5. Tybell T, Ahn CH, Triscone J-M (1999) Ferroelectricity in thin perovskite films. Appl Phys Lett 75:856–858

    Article  Google Scholar 

  6. Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Auciello O, Fuoss PH, Thompson C (2004) Ferroelectricity in ultrathin perovskite films. Science 304:1650–1653

    Article  Google Scholar 

  7. Yanase N, Abe K, Fukushima N, Kawakubo T (1999) Thickness dependence of ferroelectricity in heteroepitaxial BaTiO3 thin film capacitors. Jpn J Appl Phys 38:5305–5308

    Article  Google Scholar 

  8. Chu Y-H, Martin LW, Holcomb MB, Ramesh R (2007) Controlling magnetism with multiferroics. Mater Today 10:16–23

    Article  Google Scholar 

  9. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7 × 7 reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  Google Scholar 

  10. Moore RG, Zhang J, Nascimento VB, Jin R, Guo J, Wang GT, Fang Z, Mandrus D, Plummer EW (2007) A surface-tailored, purely electronic, Mott metal-to-insulator transition. Science 318:615–619

    Article  Google Scholar 

  11. Parkin SSP, Sigsbee R, Felici R, Felcher GP (1986) Observation of magnetic dead layers at the surface of iron oxide films. Appl Phys Lett 48:604–606

    Article  Google Scholar 

  12. Nascimento VB, Freeland JW, Saniz R, Moore RG, Mazur D, Liu H, Pan MH, Rundgren J, Gray KE, Rosenberg RA, Zheng H, Mitchell JF, Freeman AJ, Veltruska K, Plummer EW (2009) Surface-stabilized nonferromagnetic ordering of a layered ferromagnetic manganite. Phys Rev Lett 103:227201

    Article  Google Scholar 

  13. van der Laan G, Hoyland MA, Surman M, Flipse CFJ, Thole BT (1992) Surface orbital magnetic moment of ferromagnetic nickel studied by magnetic circular dichroism in Ni 3p core level photoemission. Phys Rev Lett 69:3827–3830

    Article  Google Scholar 

  14. Chakhalian J, Freeland JW, Srajer G, Strempfer J, Khaliullin G, Cezar JC, Charlton T, Dalgliesh R, Bernhard C, Cristiani G, Habermeier H-U, Keimer B (2006) Magnetism at the interface between ferromagnetic and superconducting oxides. Nat Phys 2:244–248

    Article  Google Scholar 

  15. Nakagawa N, Hwang HY, Muller DA (2006) Why some interfaces cannot be sharp. Nat Mater 5:204–209

    Article  Google Scholar 

  16. Chakhalian J, Freeland JW, Habermeier H-U, Cristiani G, Khaliullin G, van Veenendaal M, Keimer B (2007) Orbital reconstruction and covalent bonding at an oxide interface. Science 318:1114–1117

    Article  Google Scholar 

  17. Baiutti F, Christiani G, Logvenov G (2014) Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy. Beilstein J Nanotechnol 5:596–602

    Article  Google Scholar 

  18. Eason R (2006) Pulsed laser deposition of thin flms: applications—led growth of functional materials. Wiley, Hoboken

    Book  Google Scholar 

  19. Christen HM, Eres G (2008) Recent advances in pulsed-laser deposition of complex oxides. J Phys Condens Matter 20:264005

    Article  Google Scholar 

  20. Schiffer P, Ramirez AP, Bao W, Cheong S-W (1995) Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. Phys Rev Lett 75:3336–3339

    Article  Google Scholar 

  21. Oka T, Nagaosa N (2005) Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance. Phys Rev Lett 95:266403

    Article  Google Scholar 

  22. Eskes H, Meinders MBJ, Sawatzky GA (1991) Anomalous transfer of spectral weight in doped strongly correlated systems. Phys Rev Lett 67:1035–1038

    Article  Google Scholar 

  23. Chien T-Y, Liu J, Chakhalian J, Guisinger N, Freeland J (2010) Visualizing nanoscale electronic band alignment at the La2/3Ca1/3MnO3/Nb:SrTiO3 interface. Phys Rev B 82:041101(R)

    Article  Google Scholar 

  24. Chien T-Y, Kourkoutis LF, Chakhalian J, Gray B, Kareev M, Guisinger NP, Muller DA, Freeland JW (2013) Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nat Commun 4:2336

    Article  Google Scholar 

  25. Chien T-Y, Chakhalian J, Freeland JW, Guisinger NP (2013) Cross-sectional scanning tunneling microscopy applied to complex oxide interfaces. Adv Funct Mater 23:2565–2575

    Article  Google Scholar 

  26. Huang B-C, Chiu Y-P, Huang P-C, Wang W-C, Tra VT, Yang J-C, He Q, Lin J-Y, Chang C-S, Chu Y-H (2012) Mapping band alignment across complex oxide heterointerfaces. Phys Rev Lett 109:246807

    Article  Google Scholar 

  27. Huang BC, Chen YT, Chiu YP, Huang YC, Yang JC, Chen YC, Chu YH (2012) Direct observation of ferroelectric polarization-modulated band bending at oxide interfaces. Appl Phys Lett 100:122903

    Article  Google Scholar 

  28. Li L, Richter C, Mannhart J, Ashoori RC (2011) Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat Phys 7:762–766

    Article  Google Scholar 

  29. Torrance JB, Lacorre P, Nazzal AI, Ansaldo EJ, Niedermayer C (1992) Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. Phys Rev B 45:8209–8212

    Article  Google Scholar 

  30. Hemberger J, Krimmel A, Kurz T, von Nidda H-AK, Ivanov VY, Mukhin AA, Balbashov AM, Loidl A (2002) Structural, magnetic and electrical properties of single crystalline La1-xSrxMnO3 for 0.4 < x < 0.85. Phys Rev B 66:94410

    Article  Google Scholar 

  31. Paraskevopoulos M, Mayr F, Hemberger J, Loidl A, Heichele R, Maurer D, Muller V, Mukhin AA, Balbashov AM (2000) Magnetic properties and the phase diagram of La1-xSrxMnO3 for x ≤ 0.2. J Phys Condens Matter 12:3993

    Article  Google Scholar 

  32. Paraskevopoulos M, Mayr F, Hartinger C, Pimenov A, Hemberger J, Lunkenheimer P, Loidl A, Mukhin AA, Ivanov VY, Balbashov AM (2000) The phase diagram and optical properties of La1-xSrxMnO3 for x≤0.2. J Magn Magn Mater 211:118–127

    Article  Google Scholar 

  33. Ando Y, Komiya S, Segawa K, Ono S, Kurita Y (2004) Electronic phase diagram of High-TC, cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys Rev Lett 93:267001

    Article  Google Scholar 

  34. Tomio T, Miki H, Tabata H, Kawai T, Kawai S (1994) Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping. J Appl Phys 76:5886–5890

    Article  Google Scholar 

  35. Muller DA, Nakagawa N, Ohtomo A, Grazul JL, Hwang HY (2004) Atomic-scale imaging of nanoengineered oxygen vacancy profile in SrTiO3. Nature 430:657–661

    Article  Google Scholar 

  36. Choi M, Oba F, Kumagai Y, Tanaka I (2013) Anti-ferrodistortive-like oxygen-octahedron rotation induced by the oxygen vacancy in cubic SrTiO3. Adv Mater 25:86–90

    Article  Google Scholar 

  37. Lee JH, Fang L, Vlahos E, Ke X, Jung YW, Kourkoutis LF, Kim J-W, Ryan PJ, Heeg T, Roeckerath M, Goian V, Bernhagen M, Uecker R, Hammel PC, Rabe KM, Kamba S, Schubert J, Freeland JW, Muller DA, Fennie CJ, Schiffer P, Gopalan V, Johnston-Halperin E, Schlom DG (2010) A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466:954–958

    Article  Google Scholar 

  38. Meevasana W, King PDC, He RH, Mo S, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F, Shen Z (2011) Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat Mater 10:114–118

    Article  Google Scholar 

  39. Tufte ON, Chapman PW (1967) Electron mobility in semiconducting strontium titanate. Phys Rev 155:796–802

    Article  Google Scholar 

  40. Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–426

    Article  Google Scholar 

  41. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G, Richter C, Schneider CW, Kopp T, Ruetschi A-S, Jaccard D, Gabay M, Muller DA, Triscone J-M, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199

    Article  Google Scholar 

  42. Gozar A, Logvenov G, Kourkoutis LF, Bollinger AT, Giannuzzi LA, Muller DA, Bozovic I (2008) High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455:782–785

    Article  Google Scholar 

  43. Rose V, Wang K, Chien T, Hiller J, Rosenmann D, Freeland JW, Preissner C, Hla S-W (2013) Synchrotron X-ray scanning tunneling microscopy: fingerprinting near to far field transitions on Cu(111) induced by synchrotron radiation. Adv Funct Mater 23:2646–2652

    Article  Google Scholar 

  44. Wang K, Rosenmann D, Holt M, Winarski R, Hla S-W, Rose V (2013) An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy. Rev Sci Instrum 84:63704

    Article  Google Scholar 

  45. Rose V, Freeland JW, Garrett R, Gentle I, Nugent K, Wilkins S (2010) Nanoscale chemical imaging using synchrotron X-ray enhanced scanning tunneling microscopy. AIP Conf Proc 1234:445–448

    Article  Google Scholar 

  46. Cummings ML, Chien T, Preissner C, Madhavan V, Diesing D, Bode M, Freeland JW, Rose V (2012) Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast. Ultramicroscopy 112:22–31

    Article  Google Scholar 

  47. Rose V, Chien TY, Freeland JW, Rosenmann D, Hiller J, Metlushko V (2012) Spin-dependent synchrotron X-ray excitations studied by scanning tunneling microscopy. J Appl Phys 111:07E304

    Article  Google Scholar 

  48. Rose V, Chien TY, Hiller J, Rosenmann D, Winarski RP (2011) X-ray nanotomography of SiO2-coated Pt90Ir10 tips with sub-micron conducting apex. Appl Phys Lett 99:173102

    Article  Google Scholar 

  49. Rose V, Freeland JW, Gray KE, Streiffer SK (2008) X-ray-excited photoelectron detection using a scanning tunneling microscope. Appl Phys Lett 92:193510

    Article  Google Scholar 

  50. Bonnell DA (1998) Scanning tunneling microscopy and spectroscopy of oxide surfaces. Prog Surf Sci 57:187–252

    Article  Google Scholar 

  51. Bonnell DA, Garra J (2008) Scanning probe microscopy of oxide surfaces: atomic structure and properties. Rep Prog Phys 71:44501

    Article  Google Scholar 

  52. Chiu Y-P, Chen Y-CY-T, Huang B-C, Shih M-C, Yang J-C, He Q, Liang C-W, Seidel J, Chen Y-CY-T, Ramesh R, Chu Y-H (2011) Atomic-scale evolution of local electronic structure across multiferroic domain walls. Adv Mater 23:1530–1534

    Article  Google Scholar 

  53. Basletic M, Maurice J-L, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet E, Bouzehouane K, Fusil S, Barthélémy A (2008) Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat Mater 7:621–625

    Article  Google Scholar 

  54. Copie O, Garcia V, Bödefeld C, Carrétéro C, Bibes M, Herranz G, Jacquet E, Maurice J-L, Vinter B, Fusil S, Bouzehouane K, Jaffrès H, Barthélémy A (2009) Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces. Phys Rev Lett 102:216804

    Article  Google Scholar 

  55. Kuru Y, Jalili H, Cai Z, Yildiz B, Tuller HL (2011) Direct probing of nanodimensioned oxide multilayers with the aid of focused ion beam milling. Adv Mater 23:4543–4548

    Article  Google Scholar 

  56. Kermode JR, Albaret T, Sherman D, Bernstein N, Gumbsch P, Payne MC, Csányi G, De Vita A (2008) Low-speed fracture instabilities in a brittle crystal. Nature 455:1224–1227

    Article  Google Scholar 

  57. Ahmad AL, Idrus NF, Othman MR (2005) Preparation of perovskite alumina ceramic membrane using sol-gel method. J Membr Sci 262:129

    Article  Google Scholar 

  58. Chien T, Guisinger NP, Freeland JW (2010) Survey of fractured SrTiO3 surfaces: from the micrometer to nanometer scale. J Vac Sci Technol B Microelectron Nanometer Struct 28:C5A11–C5A13

    Google Scholar 

  59. Guisinger NP, Santos TS, Guest JR, Chien T-Y, Bhattacharya A, Freeland JW, Bode M (2009) Nanometer-scale striped surface terminations on fractured SrTiO3 surfaces. ACS Nano 3:4132

    Article  Google Scholar 

  60. Chien T, Santos TS, Bode M, Guisinger NP, Freeland JW (2009) Controllable local modification of fractured Nb-doped SrTiO3 surfaces. Appl Phys Lett 95:163107

    Article  Google Scholar 

  61. Chien T-Y, Guisinger NP, Freeland JW (2011) Cross-sectional scanning tunneling microscopy for complex oxide interfaces. Proc SPIE 7940:79400T

    Article  Google Scholar 

  62. Chien T, Liu J, Yost AJ, Chakhalian J, Freeland JW, Guisinger NP (2016) Built-in electric field induced mechanical property change at the lanthanum nickelate/Nb-doped strontium titanate interfaces. Sci Rep 6:19017

    Article  Google Scholar 

  63. Chen Y, Cai Z, Kuru Y, Ma W, Tuller HL, Yildiz B (2013) Electronic activation of cathode superlattices at elevated temperatures-source of markedly accelerated oxygen reduction kinetics. Adv Energy Mater 3:1221–1229

    Article  Google Scholar 

  64. Chien T, Freeland JW, Guisinger NP (2012) Morphology control of Fe films using ordered termination on SrTiO3 surfaces. Appl Phys Lett 100:31601

    Article  Google Scholar 

  65. S. P. Mcjijnkins and J. I. Thornton, Glass fracture analysis. A review Forensic Sci 2, 1–27 (1973)

    Google Scholar 

  66. Reihl B, Bednorz JG, Müller KA, Jugnet Y, Landgren G, Morar JF (1984) Electronic structure of strontium titanate. Phys Rev B 30:803–806

    Article  Google Scholar 

  67. Kohiki S, Arai M, Yoshikawa H, Fukushima S, Oku M, Waseda Y (2000) Energy-loss structure in core-level photoemission satellites. Phys Rev B 62:7964–7969

    Article  Google Scholar 

  68. Pennec Y, Ingle NJC, Elfimov IS, Varene E, Maeno Y, Damascelli A, Barth JV (2008) Cleaving-temperature dependence of layered-oxide surfaces. Phys Rev Lett 101:216103

    Article  Google Scholar 

  69. Lytle FW (1964) X-ray diffractometry of low-temperature phase transformations in strontium titanate. J Appl Phys 35:2212–2215

    Article  Google Scholar 

  70. Herranz G, Copie O, Gentils A, Tafra E, Basletić M, Fortuna F, Bouzehouane K, Fusil S, Jacquet É, Carŕt́ro C, Bibes M, Hamzić A, Barth́ĺmy A (2010) Vacancy defect and carrier distributions in the high mobility electron gas formed at ion-irradiated SrTiO3 surfaces. J Appl Phys 107:103704

    Article  Google Scholar 

  71. Lü WM, Sun JR, Wang DJ, Xie YW, Liang S, Chen YZ, Shen BG (2008) Interfacial potential in La1-xCaxMnO3/SrTiO3:Nb junctions with different Ca contents. Appl Phys Lett 92:62503

    Article  Google Scholar 

  72. Siemons W, Koster G, Yamamoto H, Harrison WA, Lucovsky G, Geballe TH, Blank DHA, Beasley MR (2007) Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys Rev Lett 98:196802

    Article  Google Scholar 

  73. Bert JA, Kalisky B, Bell C, Kim M, Hikita Y, Hwang HY, Moler KA (2011) Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat Phys 7:767–771

    Article  Google Scholar 

  74. Pojani A, Finocchi F, Noguera C (1999) Polarity on the SrTiO3 (111) and (110) surfaces. Surf Sci 442:179–198

    Article  Google Scholar 

  75. Herranz G, Sánchez F, Dix N, Scigaj M, Fontcuberta J (2012) High mobility conduction at (110) and (111) LaAlO3/SrTiO3 interfaces. Sci Rep 2:758

    Article  Google Scholar 

  76. Willmott PR, Pauli SA, Herger R, Schlepütz CM, Martoccia D, Patterson BD, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y (2007) Structural basis for the conducting interface between LaAlO3 and SrTiO3. Phys Rev Lett 99:155502

    Article  Google Scholar 

  77. Chambers SA, Engelhard MH, Shutthanandan V, Zhu Z, Droubay TC, Qiao L, Sushko PV, Feng T, Lee HD, Gustafsson T, Garfunkel E, Shah AB, Zuo JM, Ramasse QM (2010) Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3 (001) heterojunction. Surf Sci Rep 65:317–352

    Article  Google Scholar 

  78. Cen C, Thiel S, Hammerl G, Schneider CW, Andersen KE, Hellberg CS, Mannhart J, Levy J (2008) Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat Mater 7:298–302

    Article  Google Scholar 

  79. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz MP, Chu YH, Ederer C, Spaldin NA, Das RR, Kim DM, Baek SH, Eom CB, Ramesh R (2006) Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat Mater 5:823–829

    Article  Google Scholar 

  80. Sone K, Naganuma H, Ito M, Miyazaki T, Nakajima T, Okamura S (2015) 100-nm-sized magnetic domain reversal by the magneto-electric effect in self-assembled BiFeO3/CoFe2O4 bilayer films. Sci Rep 5:9348

    Article  Google Scholar 

  81. Hsieh Y-H, Strelcov E, Liou J-M, Shen C-Y, Chen Y-C, Kalinin SV, Chu Y-H (2013) Electrical modulation of the local conduction at oxide tubular interfaces. ACS Nano 7:8627–8633

    Article  Google Scholar 

  82. Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309:391–392

    Article  Google Scholar 

  83. Streiffer SK, Parker CB, Romanov AE, Lefevre MJ, Zhao L, Speck JS, Pompe W, Foster CM, Bai GR (1998) Domain patterns in epitaxial rhombohedral ferroelectric films. J Appl Phys 83:2742–2753

    Article  Google Scholar 

  84. Mermin ND (1979) The topological theory of defects in ordered media. Rev Mod Phys 51:591–648

    Article  Google Scholar 

  85. Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y (2009) Composite domain walls in a multiferroic perovskite ferrite. Nat Mater 8:558–562

    Article  Google Scholar 

  86. Béa H, Bibes M, Ott F, Dupé B, Zhu XH, Petit S, Fusil S, Deranlot C, Bouzehouane K, Barthélémy A (2008) Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys Rev Lett 100:17204

    Article  Google Scholar 

  87. Martin LW, Chu Y-H, Holcomb MB, Huijben M, Yu P, Han S-J, Lee D, Wang SX, Ramesh R (2008) Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett 8:2050–2055

    Article  Google Scholar 

  88. Lubk A, Gemming S, Spaldin NA (2009) First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys Rev B 80:104110

    Article  Google Scholar 

  89. Seidel J, Martin LW, He Q, Zhan Q, Chu Y-H, Rother A, Hawkridge ME, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin SV, Gemming S, Wang F, Catalan G, Scott JF, Spaldin NA, Orenstein J, Ramesh R (2009) Conduction at domain walls in oxide multiferroics. Nat Mater 8:229–234

    Article  Google Scholar 

  90. Buzdin AI (2005) Proximity effects in superconductor-ferromagnet heterostructures. Rev Mod Phys 77:935–976

    Article  Google Scholar 

  91. Dagotto E (2005) Complexity in strongly correlated electronic systems. Science 309:257–262

    Article  Google Scholar 

  92. Bibes M, Villegas JE, Barthélémy A (2011) Ultrathin oxide films and interfaces for electronics and spintronics. Adv Phys 60:5–84

    Article  Google Scholar 

  93. Hoffmann A, Te Velthuis SGE, Sefrioui Z, Santamaría J, Fitzsimmons MR, Park S, Varela M (2005) Suppressed magnetization in La0.7Ca0.3MnO3/YBa2Cu3O7-δ superlattices. Phys Rev B 72:140407(R)

    Article  Google Scholar 

  94. Visani C, Tornos J, Nemes NM, Rocci M, Leon C, Santamaria J, Te Velthuis SGE, Liu Y, Hoffmann A, Freeland JW, Garcia-Hernandez M, Fitzsimmons MR, Kirby BJ, Varela M, Pennycook SJ (2011) Symmetrical interfacial reconstruction and magnetism in La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 heterostructures. Phys Rev B 84:060405(R)

    Article  Google Scholar 

  95. Zhang ZL, Kaiser U, Soltan S, Habermeier H-U, Keimer B (2009) Magnetic properties and atomic structure of La2/3Ca1/3MnO3-YBa2Cu3O7 heterointerfaces. Appl Phys Lett 95:242505

    Article  Google Scholar 

  96. Varela M, Lupini AR, Pennycook SJ, Sefrioui Z, Santamaria J (2003) Nanoscale analysis of YBa2Cu3O7x/La0.67Ca0.33MnO3 interfaces. Solid State Electron 47:2245–2248

    Article  Google Scholar 

  97. Liu B, Chen Z, Wang Y, Wang X (2001) The effect of an electric field on the mechanical properties and microstructure of Al–Li alloy containing Ce. Mater Sci Eng A A313:69–74

    Article  Google Scholar 

  98. Liu W, Liang KM, Zheng YK, Cui JZ (1996) Effect of an electric field during solution treatment of 2091 Al-Li alloy. J Mater Sci Lett 15:1327–1329

    Google Scholar 

  99. Conrad H, Guo Z, Sprecher AF (1989) Effect of an electric field on the recovery and recrystallization of Al and Cu. Scr Metall 23:821–823

    Article  Google Scholar 

  100. Sprecher AF, Mannan SL, Conrad H (1986) On the mechanisms for the electroplastic effect in metals. Acta Metall 34:1145–1162

    Article  Google Scholar 

  101. Park Y, Kim HG (1997) Effect of electric field on the phase transition in ZrTiO4. J Mater Sci Lett 16:1130–1132

    Article  Google Scholar 

  102. Kumar S, Singh RN (1997) Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials. Mater Sci Eng A 231:1–9

    Article  Google Scholar 

  103. Yang DI, Conrad H (1998) Influence of an electric field on the plastic deformation of polycrystalline NaCl at elevated temperatures. Acta Mater 46:1963–1968

    Article  Google Scholar 

  104. Yang F, Dang H (2009) Effect of electric field on the nanoindentation of zinc sulfide. J Appl Phys 105:56110

    Article  Google Scholar 

  105. Revilla RI, Li X-J, Yang Y-L, Wang C (2014) Large electric field-enhanced-hardness effect in a SiO2 film. Sci Rep 4:4523

    Article  Google Scholar 

  106. Wang H, Lin H-T, Wereszczak AA (2010) Strength properties of poled lead zirconate titanate subjected to biaxial flexural loading in high electric field. J Am Ceram Soc 93:2843–2849

    Article  Google Scholar 

  107. Yamamoto T, Suzuki S, Kawaguchi K, Takahashi K (1998) Temperature dependence of the ideality factor of Ba1-xKxBiO3/Nb-doped SrTiO3 all-oxide-type Schottky junctions. Jpn J Appl Phys 37:4737–4746

    Article  Google Scholar 

  108. Stengel M, Spaldin NA (2006) Origin of the dielectric dead layer in nanoscale capacitors. Nature 443:679–682

    Article  Google Scholar 

  109. Ryu KH, Haile SM (1999) Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics 125:355–367

    Article  Google Scholar 

  110. Malagoli M, Liu ML, Park HC, Bongiorno A (2013) Protons crossing triple phase boundaries based on a metal catalyst, Pd or Ni, and barium zirconate. Phys Chem Chem Phys 15:12525–12529

    Article  Google Scholar 

  111. Pergolesi D, Fabbri E, D’Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Licoccia S, Balestrino G, Traversa E (2010) High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat Mater 9:846–852

    Article  Google Scholar 

  112. Foglietti V, Yang N, Tebano A, Aruta C, Di Bartolomeo E, Licoccia S, Cantoni C, Balestrino G (2014) Heavily strained BaZr0.8Y0.2O3-x interfaces with enhanced transport properties. Appl Phys Lett 104:81612

    Article  Google Scholar 

  113. Yang N, Cantoni C, Foglietti V, Tebano A, Belianinov A, Strelcov E, Jesse S, Di Castro D, Di Bartolomeo E, Licoccia S, Kalinin SV, Balestrino G, Aruta C (2015) Defective interfaces in yttrium-doped barium zirconate films and consequences on proton conduction. Nano Lett 15:2343–2349

    Article  Google Scholar 

  114. Kumar A, Ciucci F, Morozovska AN, Kalinin SV, Jesse S (2011) Measuring oxygen reduction/evolution reactions on the nanoscale. Nat Chem 3:707–713

    Article  Google Scholar 

  115. Kumar A, Ciucci F, Leonard D, Jesse S, Biegalski M, Christen H, Mutoro E, Crumlin E, Shao-Horn Y, Borisevich A, Kalinin SV (2013) Probing bias-dependent electrochemical gas-solid reactions in (LaxSr1-x)CoO3-δ cathode materials. Adv Funct Mater 23:5027–5036

    Article  Google Scholar 

  116. Dholabhai P, Pilania G, Aguiar J, Misra A, Uberuaga BP (2014) Termination chemistry-driven dislocation structure at SrTiO3/MgO heterointerfaces. Nat Commun 5:5043

    Article  Google Scholar 

  117. Katsiev K, Yildiz B, Balasubramaniam KR, Salvador P (2009) Electron tunneling characteristics on La0.7Sr0.3MnO3 thin-film surfaces at high temperature. Appl Phys Lett 95:92106

    Article  Google Scholar 

  118. Jung W, Tuller HL (2008) Investigation of cathode behavior of model thin-film SrTi1-xFexO3-δ (x=0.35 and 0.5) mixed ionic-electronic conducting electrodes. J Electrochem Soc 155:B1194–B1201

    Article  Google Scholar 

  119. Sase M, Hermes F, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yokokawa H (2008) Enhancement of oxygen surface exchange at the hetero-interface of (La,Sr)CoO3/(La,Sr)2CoO4 with PLD-layered films. J Electrochem Soc 155:B793–B797

    Article  Google Scholar 

  120. Sase M, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yamaji K, Horita T, Yokokawa H (2008) Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics. Solid State Ionics 178:1843–1852

    Article  Google Scholar 

  121. Januschewsky J, Ahrens M, Opitz A, Kubel F, Fleig J (2009) Optimized La0.6Sr0.4CoO3-δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv Funct Mater 19:3151–3156

    Article  Google Scholar 

  122. Adler SB (1998) Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes. Solid State Ionics 111:125–134

    Article  Google Scholar 

  123. Mastrikov YA, Merkle R, Heifets E, Kotomin EA, Maier J (2010) Pathways for oxygen incorporation in mixed conducting perovskites: a DFT-based mechanistic analysis for (La,Sr)MnO3-δ. J Phys Chem C 114:3017–3027

    Article  Google Scholar 

  124. Han JW, Yildiz B (2012) Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3-δ/(La,Sr)2CoO4+δ hetero-interface. Energy Environ Sci 5:8598–8607

    Article  Google Scholar 

  125. Yost AJ, Pimachev A, Ho C-C, Darling SB, Wang L, Su W-F, Dahnovsky Y, Chien T (2016) Coexistence of two electronic nano-phases on a CH3NH3PbI3-xClx surface observed in STM measurements. ACS Appl Mater Interfaces 8:29110–29116

    Article  Google Scholar 

  126. Shih M-C, Huang B-C, Lin C-C, Li S-S, Chen H-A, Chiu Y-P, Chen C-W (2013) Atomic-scale interfacial band mapping across vertically phased-separated polymer/fullerene hybrid solar cells. Nano Lett 13:2387–2392

    Article  Google Scholar 

Download references

Acknowledgements

TYC acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering for financial support (DEFG02-10ER46728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TeYu Chien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chien, T. (2018). Nanostructured Oxides: Cross-Sectional Scanning Probe Microscopy for Complex Oxide Interfaces. In: Balasubramanian, G. (eds) Advances in Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-64717-3_5

Download citation

Publish with us

Policies and ethics